Genome wide association studies frequently reveal associations between disease susceptibility and polymorphisms outside coding regions. Such associations cannot always be explained by linkage disequilibrium with changes affecting the transcription products. This has stimulated the interest in characterising sequence variation influencing gene expression levels, in particular in changes acting in cis. Differences in transcription between the two alleles at an autosomal locus can be used to test the association between candidate polymorphisms and the modulation of gene expression in cis. This type of approach requires at least one transcribed polymorphism and one candidate polymorphism. In the past five years, different methods have been proposed to analyse such data. Here we use simulations and real data sets to compare the power of some of these methods. The results show that when it is not possible to determine the phase between the transcribed and potentially cis acting allele there is some advantage in using methods that estimate phased genotype and effect on expression simultaneously. However when the phase can be determined, simple regression models seem preferable because of their simplicity and flexibility. The simulations and the analysis of experimental data suggest that in the majority of situations, methods that assume a lognormal distribution of the allelic expression ratios are both robust to deviations from this assumption and more powerful than alternatives that do not make these assumptions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236754 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028636 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!