Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235091 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027935 | PLOS |
J Environ Manage
January 2025
Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan. Electronic address:
Serpentine soils are characterized by high concentrations of heavy metals (HMs) and limited essential nutrients with remarkable endemic plant diversity, yet the mechanisms enabling plant adaptation to thrive in such harsh environments remain largely unknown. Full-length 16S rRNA amplicon sequencing, coupled with physiological and functional assays, was used to explore root-associated bacterial community composition and their metabolic and ecological functions. The results revealed that serpentine plant species exhibited significantly higher metal transfer factor values compared to non-serpentine plant species, particularly evident in Bidens pilosa, Miscanthus floridulus, and Leucaena leucocephala.
View Article and Find Full Text PDFMol Genet Genomics
March 2024
Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja Od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina.
J Hazard Mater
June 2023
Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Medical Research, Dalin Tzu Chi Hospital, The Buddhist Tze Chi Medical Foundation, Chiayi, Taiwan. Electronic address:
Environmental microbes in rhizosphere soil and surrounding plants have the potential to alter ecosystem functions. We investigated the microbial communities inhabiting the rhizosphere soils of both serpentine and non-serpentine rhizosphere zones to evaluate their heavy metal tolerance and ability to promote plant growth, utilizing 16S rRNA metabarcoding. The Biolog-EcoPlate technique was employed to determine how abiotic stress factors affect carbon utilization capacity by rhizospheric microbial communities in the serpentine geo-ecosystem.
View Article and Find Full Text PDFHeliyon
February 2023
Loyola University Maryland, 4501 N. Charles St., Baltimore, MD, USA.
Root architecture is important in nutrient uptake and avoidance of toxic compounds within the soil. spp. has widespread distribution in disjunct environments that encounter unique stressors starting at germination.
View Article and Find Full Text PDFEnviron Res
January 2023
Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan. Electronic address:
In the present study, we have underpinned the serpentine rock, serpentinized ultramafic soil and rhizosphere's microbial communities, signifying their heavy metals-exposed taxa signatures and functional repertoires in comparison to non-serpentine soils. The results revealed that the serpentine rock embedded soil highlighted the geo-accumulation of higher amount of Cr and Ni impacting soil microbial diversity negatively by metal stress-driven selection. Biolog Ecoplate CLPP defined a restricted spectrum of C-utilization in the higher heavy metal-containing serpentine samples compared to non-serpentine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!