Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236184 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022825 | PLOS |
Sci Total Environ
January 2025
Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain. Electronic address:
Campylobacter spp. and Salmonella spp. are the leading cause of human enteric infections in the European Union.
View Article and Find Full Text PDFSci Rep
January 2025
Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
Antimicrob Agents Chemother
December 2024
National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France.
Front Cell Infect Microbiol
January 2025
Biomedical Research Center, Qatar University, Doha, Qatar.
Angew Chem Int Ed Engl
December 2024
Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
Owing to the inaccessibility of β1-4-N-acetylgalactosaminyltransferase for direct glycan chain elongation, the enzymatic synthesis of 0-series gangliosides with extended backbones has not been explored. In this study, sialic acid was enzymatically introduced as an auxiliary group to overcome the limitation of substrate specificity of Campylobacter jejuni β1-4-N-acetylgalactosaminyltransferase (CjCgtA) to achieve the synthesis of desired extended 0-series ganglioside core structures, and the sialic acid auxiliary group could be removed by sialidase at appropriate stages. A bacterial α2-6-sialyltransferase from Photobacterium damselae (Pd2,6ST) exhibited unexpected acceptor substrate specificity for 0-series ganglioside core structures, providing ready access to complex gangliosides bearing the sialyl N-acetylgalactosamine unit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!