Didymin induces apoptosis by inhibiting N-Myc and upregulating RKIP in neuroblastoma.

Cancer Prev Res (Phila)

Department of Diabetes and Metabolic Disease Research, National Medical Center, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.

Published: March 2012

Neuroblastomas arise from the neural crest cells and represent the most common solid tumors outside the nervous system in children. The amplification of N-Myc plays a primary role in the pathogenesis of neuroblastomas, whereas acquired mutations of p53 lead to refractory and relapsed cases of neuroblastomas. In this regard, dietary compounds which can target N-Myc and exert anticancer effects independent of p53 status acquire significance in the management of neuroblastomas. Hence, we investigated the anticancer properties of the flavonoid didymin in neuroblastomas. Didymin effectively inhibited proliferation and induced apoptosis irrespective of p53 status in neuroblastomas. Didymin downregulated phosphoinositide 3-kinase, pAkt, Akt, vimentin, and upregulated RKIP levels. Didymin induced G(2)/M arrest along with decreasing the levels of cyclin D1, CDK4, and cyclin B1. Importantly, didymin inhibited N-Myc as confirmed at protein, mRNA, and transcriptional level by promoter-reporter assays. High-performance liquid chromatography analysis of didymin-treated (2 mg/kg b.w.) mice serum revealed effective oral absorption with free didymin concentration of 2.1 μmol/L. Further in vivo mice xenograft studies revealed that didymin-treated (2 mg/kg b.w.) animals had significant reductions in tumors size compared with controls. Didymin strongly inhibited the proliferation (Ki67) and angiogenesis (CD31) markers, as well as N-Myc expression, as revealed by the histopathologic examination of paraffin-embedded section of resected tumors. Collectively, our in vitro and in vivo studies elucidated the anticancer properties and mechanisms of action of a novel, orally active, and palatable flavonoid didymin, which makes it a potential new approach for neuroblastoma therapy (NANT) to target pediatric neuroblastomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294094PMC
http://dx.doi.org/10.1158/1940-6207.CAPR-11-0318DOI Listing

Publication Analysis

Top Keywords

didymin
9
p53 status
8
anticancer properties
8
flavonoid didymin
8
neuroblastomas didymin
8
inhibited proliferation
8
didymin inhibited
8
didymin-treated mg/kg
8
neuroblastomas
7
n-myc
5

Similar Publications

'Chachi' (CRC), recognized for its considerable edible and medicinal significance, is a valuable source of metabolites beneficial to human health. This research investigates the metabolic distinctions and antioxidant properties across four different parts of CRC, using multivariate statistical analysis to interpret metabolomic data and network pharmacology to identify potential antioxidant targets and relevant signaling pathways. The results indicate considerable metabolic differences in different parts of the sample, with 1622 metabolites showing differential expression, including 816 secondary metabolites, primarily consisting of terpenoids (31.

View Article and Find Full Text PDF

Citri Reticulatae Pericarpium (CRP), particularly including the pericarp of 'Chachi' (GCP), has been widely used as a food, a dietary supplement, and traditional Chinese medicine. Despite the widespread use of traditional foods, there is limited evidence regarding the precise relationships between storage conditions, aging duration, and the digestive performance of CRP. In this study, the aim was to investigate the impact of the storage conditions on the quality of aged GCP during shelf life and to evaluate the subsequent digestive performance of corresponding GCP decoctions.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Mentha longifolia L. has been employed to treat cough, lung inflammation, and bronchial asthma disorders.

Aim Of The Study: Our study was carried out to investigate the medicinal effect of the flavonoids derived from M.

View Article and Find Full Text PDF

Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical-pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise many natural chemical compounds that can be helpful in managing metabolic diseases.

View Article and Find Full Text PDF

Didymin Ameliorates Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis by Regulating Gut Microbiota and Amino Acid Metabolism in Mice.

Metabolites

October 2024

Hunan Provincial Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Process and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China.

Didymin is a dietary flavonoid derived from citrus fruits and has been shown to have extensive biological functions, especially anti-inflammatory effects, but its mechanism is unclear. The purpose of this study was to investigate the potential mechanism of didymin that alleviates ulcerative colitis. : Our results indicated that didymin could alleviate the symptoms of ulcerative colitis, as it inhibited the expressions of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!