Dissociation curves calculated using multiple correlated QM methods for 66 noncovalent complexes (Řezáč et al., J Chem Theory Comput 2011, 7, 2427) have allowed us to interpolate equilibrium intermolecular distances for each studied method. Comparison of these data with CCSD(T)/complete basis set reference geometries provides information on how these methods perform in geometry optimizations. The large set of systems considered here is necessary for reliable statistical evaluation of the results and assessment of the robustness of the studied methods. Our results show that advanced methods such as MP3 and CCSD provide significant improvement over MP2 only when empirical scaling is used. The best results can be achieved with spin component scaled CCSD optimized for noncovalent interactions, with a root mean square error of 0.4% of the equilibrium distance. Scaled MP3, the MP2.5 method, yields comparably good results (error 0.5%) while being substantially cheaper.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.22899DOI Listing

Publication Analysis

Top Keywords

noncovalent complexes
8
methods
5
evaluation performance
4
performance post-hartree-fock
4
post-hartree-fock methods
4
methods terms
4
terms intermolecular
4
intermolecular distance
4
distance noncovalent
4
complexes dissociation
4

Similar Publications

Quantum Molecular Dynamics Approach to Understanding Interactions in Betaine Chloride and Amino Acid Natural Deep Eutectic Solvents.

ACS Phys Chem Au

January 2025

Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.

The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.

View Article and Find Full Text PDF

Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel.

View Article and Find Full Text PDF

In this study, we explored the binding mechanism between tannic acid (TA) and gluten to apply TA as an ingredient in bread-making to evaluate its baking performance and starch digestion. The interaction was systematically investigated by analyzing binding affinity, binding mode, and matrix structure of the TA-gluten complex using fluorescence quenching, molecular docking, and confocal laser scanning microscopy. TA strongly interacted with gluten via non-covalent interactions, mainly hydrogen bonds, and formed the major hydrogen bonds with six different glutamines (Q32, Q108, Q313, Q317, Q317, and Q349), which play a critical role in gluten network construction among amino acid residues of gluten.

View Article and Find Full Text PDF

Using Commercial Bio-Functional Fungal Polysaccharides to Construct Emulsion Systems by Associating with SPI.

Foods

January 2025

Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.

Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of (AA) and (GL) and soy protein isolate to enhance emulsifying properties. Complexes were examined across protein-to-polysaccharide ratios (0:1 to 1:0), pH levels (3 to 7), and heat treatment conditions.

View Article and Find Full Text PDF

To investigate the impact of tea polyphenols on the thermodynamic properties, gelatinization properties, rheological properties, and digestion characteristics of starch after ball milling, canna starch and tea polyphenols were mixed at a 10:1 ratio (/) in an experiment and processed with different ball milling times. After ball milling for 3 h, the tea polyphenols and starch fragments formed complexes. Compared with the unmilled mixture, the solubility increased by 199.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!