Start-up of completely autotrophic nitrogen removal over nitrite enhanced by hydrophilic-modified carbon fiber.

Appl Biochem Biotechnol

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of MOE, Chongqing University, Chongqing, 400045, China.

Published: February 2012

In order to assess the effects of the surface hydrophilicity of supports on the biofilm formation and evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor (SBBR), unmodified activity carbon fibers (ACFs) and ACFs hydrophilic modified by heat treatment were used as supports. CANON process was initiated in a SBBR from conventional activated sludge. An operation temperature of 32 ± 2 °C, dissolved oxygen (DO) level at 1.5 mg L⁻¹ and free ammonia (FA) concentration with 3.98-15.93 mg L⁻¹ were maintained in the SBBR. Fourier transform infrared (FT-IR) spectra and Boehm's neutralizing titration exhibited that modified ACFs had more oxygen-containing groups than unmodified ACFs. Larger biofilm growth on the modified surfaces examined by scanning electron microscopy and biofilm's total dry weight, and the biofilm on the modified surfaces were more active, compared with those on the unmodified surfaces. This study demonstrates the hydrophilic-modified ACFs have better biological affinity than unmodified ACFs. Maximal total nitrogen removal rate of 0.088 k g N m⁻³ day⁻¹ was achieved for the CANON process on day 80, indicating the CANON process was successfully started up. Apart from supports, the strategies of DO supplying and controlling FA concentration were also keys in starting up the CANON process within a shorter period.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-011-9476-8DOI Listing

Publication Analysis

Top Keywords

canon process
20
nitrogen removal
12
completely autotrophic
8
autotrophic nitrogen
8
removal nitrite
8
unmodified acfs
8
modified surfaces
8
acfs
6
canon
5
process
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!