In this study, both experimental ionic conductivity measurements and the first-principles simulations are employed to investigate the Li(+) ionic diffusion properties in lithium-based imides (Li(2)NH, Li(2)Mg(NH)(2) and Li(2)Ca(NH)(2)) and lithium amide (LiNH(2)). The experimental results show that Li(+) ions present superionic conductivity in Li(2)NH (2.54 × 10(-4) S cm(-1)) and moderate ionic conductivity in Li(2)Ca(NH)(2) (6.40 × 10(-6) S cm(-1)) at room temperature; while conduction of Li(+) ions is hardly detectable in Li(2)Mg(NH)(2) and LiNH(2) at room temperature. The simulation results indicate that Li(+) ion diffusion in Li(2)NH may be mediated by Frenkel pair defects or charged vacancies, and the diffusion pathway is more likely via a series of intermediate jumps between octahedral and tetrahedral sites along the [001] direction. The calculated activation energy and pre-exponential factor for Li(+) ion conduction in Li(2)NH are well comparable with the experimentally determined values, showing the consistency of experimental and theoretical investigations. The calculation of the defect formation energy in LiNH(2) reveals that Li defects are difficult to create to mediate the Li(+) ion diffusion, resulting in the poor Li(+) ion conduction in LiNH(2) at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp23636bDOI Listing

Publication Analysis

Top Keywords

li+ ion
16
room temperature
12
li+
8
li+ ionic
8
lithium amide
8
ionic conductivity
8
li+ ions
8
linh2 room
8
ion diffusion
8
ion conduction
8

Similar Publications

Probing Surface Reactions on Multicomponent Glass Using Reflection-Absorption Infrared Spectroscopy.

Langmuir

January 2025

Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface.

View Article and Find Full Text PDF

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

A lanthanide ion-based metal-organic framework (Eu-TATAB nanorods) was designed and synthesized as an effective tri-mode nanoprobe for sensitive and portable detection of ethanol content in a water-ethanol mixture. The assay was based on the responsive properties of Eu-TATAB nanorods to ethanol stimulus and their adaptive encapsulation capability towards optically active lanthanides. With the addition of ethanol to the Eu-TATAB nanorods, the structure was destroyed, resulting in a decrease in luminescence, electrochemiluminescence, and ultraviolet-visible spectrophotometric signals by perturbing energy transfer in the Eu-TATAB nanorods.

View Article and Find Full Text PDF

Mesh-Collision Microtube Plasma Ion Source for Direct Mass Spectrometry Analysis.

Anal Chem

January 2025

Chinese Academy of Inspection and Quarantine, Beijing 100176, China.

Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!