Neuroinflammation is a local tissue response to injurious stimuli in the central nervous system (CNS) and is characterized by glial reactivity, induction of cytokines and chemokines, and vascular permeability. The cytokine interleukin (IL)-1β is rapidly induced following CNS insult, and is chronically expressed in neurodegenerative disorders such as Alzheimer's disease (AD). We recently developed a novel method of sustained IL-1β production in the brain to study the link between IL-1β and AD pathogenesis. Utilizing this model, we have previously demonstrated reduction of plaque size and frequency accompanied by a robust neuroinflammatory response. These observations were limited to a single early time point in the course of AD plaque deposition and did not investigate other neurodegenerative endpoints. To extend these observations to other stages of disease progression and evaluate additional pathologic markers, we investigated the effects of age and duration of IL-1β overexpression in the APPswe/PS-1dE9 AD model on a congenic C57BL/6 background. We now report that IL1β overexpression leads to decreased 6E10 immunopositive plaque pathology regardless of age or duration. We also investigated whether IL-1β overexpression led to neuronal apoptosis or cholinergic axonal degeneration in the context of this AD model. Although we could demonstrate apoptosis of infiltrating inflammatory cells, we found no evidence for IL-1 associated apoptosis of neurons or cholinergic axon degeneration even after 5 months of chronic neuroinflammation. Together, these observations point to a neuroprotective role for IL-1β in AD neuropathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302720 | PMC |
http://dx.doi.org/10.1007/s11481-011-9331-2 | DOI Listing |
Alzheimers Dement
December 2024
GSK R&D, Stevenage, Hertfordshire, United Kingdom.
Background: Genetic variants in GRN, the gene encoding progranulin, are causal for or are associated with the risk of multiple neurodegenerative diseases. Modulating progranulin has been considered as a therapeutic strategy for neurodegenerative diseases including Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD). Here, we integrated genetics with proteomic data to determine the causal human evidence for the therapeutic benefit of modulating progranulin in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA.
Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.
Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: Availability of amyloid modifying therapies will dramatically increase the need for disclosure of Alzheimer's disease (AD) related genetic and/or biomarker test results. The 21st Century Cares Act requires the immediate return of most medical test results, including AD biomarkers. A shortage of genetic counselors and dementia specialists already exists, thus driving the need for scalable methods to responsibly communicate test results.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).
Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!