A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Finite-size scaling analysis of isotropic-polar phase transitions in an amphiphilic fluid. | LitMetric

Finite-size scaling analysis of isotropic-polar phase transitions in an amphiphilic fluid.

J Phys Condens Matter

Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany.

Published: January 2012

We present Monte Carlo simulations of the isotropic-polar (IP) phase transition in an amphiphilic fluid carried out in the isothermal-isobaric ensemble. Our model consists of Lennard-Jones spheres where the attractive part of the potential is modified by an orientation-dependent function. This function gives rise to an angle dependence of the intermolecular attractions corresponding to that characteristic of point dipoles. Our data show a substantial system-size dependence of the dipolar order parameter. We analyze the system-size dependence in terms of the order-parameter distribution and a cumulant involving its first and second moments. The order parameter, its distribution, and susceptibility observe the scaling behavior characteristic of the 3D Ising universality class. Because of this scaling behavior and because all cumulants have a common intersection irrespective of system size we conclude that the IP phase transition is continuous. Considering pressures 1.3 ≤ P ≤ 3.0 we demonstrate that a line of continuous phase transitions exists which is analogous to the Curie line in systems exhibiting a ferroelectric transition. Our results are qualitatively consistent with Landau's theory of continuous phase transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/3/035103DOI Listing

Publication Analysis

Top Keywords

phase transitions
12
isotropic-polar phase
8
amphiphilic fluid
8
phase transition
8
system-size dependence
8
order parameter
8
scaling behavior
8
continuous phase
8
phase
5
finite-size scaling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!