The design of a new clinical candidate histamine-H(3) receptor antagonist for the potential treatment of excessive daytime sleepiness (EDS) is described. Phenethyl-R-2-methylpyrrolidine containing biphenylsulfonamide compounds were modified by replacement of the sulfonamide linkage with a sulfone. One compound from this series, 2j (APD916) increased wakefulness in rodents as measured by polysomnography with a duration of effect consistent with its pharmacokinetic properties. The identification of a suitable salt form of 2j allowed it to be selected for further development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.11.075DOI Listing

Publication Analysis

Top Keywords

identification biaryl
4
biaryl sulfone
4
sulfone derivatives
4
derivatives antagonists
4
antagonists histamine
4
histamine h₃
4
h₃ receptor
4
receptor discovery
4
discovery r-1-2-4'-3-methoxypropylsulfonylbiphenyl-4-ylethyl-2-methylpyrrolidine
4
r-1-2-4'-3-methoxypropylsulfonylbiphenyl-4-ylethyl-2-methylpyrrolidine apd916
4

Similar Publications

Article Synopsis
  • - The study highlights the challenge of multi-drug resistance (MDR) in cancer treatment, mainly due to the overexpression of ABC transporters like P-glycoprotein (P-gp), which affects the effectiveness of chemotherapy drugs.
  • - Researchers explored the biaryl amide skeleton for potential agents to reverse MDR and identified a compound, D2, that significantly reversed resistance to drugs like paclitaxel and cisplatin in various cancer cell lines.
  • - Compound D2 works by binding to P-gp, lowering its expression, and enhancing drug accumulation in cells, showing promise as a solution to combat MDR in cancer treatments.
View Article and Find Full Text PDF

The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in the academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this study, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors.

View Article and Find Full Text PDF

Discovery and biological evaluation of biaryl acetamide derivatives as selective and in vivo active sphingosine kinase-2 inhibitors.

Eur J Med Chem

September 2024

Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China. Electronic address:

Sphingosine kinase 2 (SphK2) has emerged as a promising target for cancer therapy due to its critical role in tumor growth. However, the lack of potent and selective inhibitors has hindered its clinical application. Herein, we report the design and synthesis of a series of novel SphK2 inhibitors, culminating in the identification of compound 12q as a highly selective and potent inhibitor of SphK2.

View Article and Find Full Text PDF

Discovery and Biosynthesis of Cihanmycins Reveal Cytochrome P450-Catalyzed Intramolecular C-O Phenol Coupling Reactions.

J Am Chem Soc

June 2024

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of natural products. The enzyme mechanism for the biaryl phenol coupling reaction of the bicyclic CCNPs remains unclear. Herein, we report the discovery of two new arabinofuranosylated bicyclic CCNPs cihanmycins (CHMs) A () and B () from DSM 45679 and the identification of the CHM biosynthetic gene cluster ( BGC) by heterologous expression in SBT18 to afford CHMs C () and D ().

View Article and Find Full Text PDF

A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules.

In Silico Pharmacol

April 2024

University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France.

Unlabelled: Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!