Substituent patterns in oligosaccharide derivatives obtained from methyl cellulose were determined up to DP10 by electrospray ionization mass spectrometry employing separation of the oligomer fractions by HPLC. Oligosaccharides were labeled with meta-aminobenzoic acid after perdeuteromethylation and partial hydrolysis of methyl cellulose, enabling simultaneous quantification according to DP by HPLC/UV. Control of the HPLC-method was performed with a defined oligomer mixture obtained from β-cyclodextrin. Results from LC-ESI-MS are discussed in comparison with those from syringe pump injection and compared to a calculated pattern for a random distribution. Programing of instrumental parameters optimized for each DP and avoidance of competition of successively eluting analytes in the electrospray process allowed extension of the established method for determination of the substitution pattern of cellulose derivatives along the polymer chain from DP5 to DP10 and thus a significant gain of information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2011.11.016DOI Listing

Publication Analysis

Top Keywords

substituent patterns
8
methyl cellulose
8
simultaneous determination
4
determination substituent
4
patterns partially
4
partially acid
4
acid hydrolyzed
4
hydrolyzed o-me/o-me-d3-cellulose
4
o-me/o-me-d3-cellulose quantification
4
quantification oligomers
4

Similar Publications

Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the Cu complex of 1,8-bis(2-hydroxybenzyl)-cyclam (HL), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible.

View Article and Find Full Text PDF

Low Temperature Emissive Cyclometalated Cobalt(III) Complexes.

Inorg Chem

January 2025

Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.

A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.

View Article and Find Full Text PDF

The synthesis, structure, and circularly polarized luminescence (CPL) properties of axially chiral boron difluoride complexes are described. A series of optically pure bis (boron difluoride) complexes were prepared in 5 steps from commercially available (S)- or (R)-BINOL as starting materials. The complexes were found to exhibit similar yellow photoluminescence in solution, regardless of the type of substituents on the nitrogen atoms.

View Article and Find Full Text PDF

Using high-level quantum chemical calculations, we predicted a strong O-H⋯C interaction between the apical carbon atoms of pyramidane and its derivatives and water molecules. Analysis of calculated electrostatic potential maps showed that there are areas of strong negative potential above apical carbon atoms in all studied structures. The results of quantum chemical calculations showed that the O-H⋯C interaction between the hydrogen atom of water and the apical carbon atom of pyramidane derivatives with four -CH substituents is unexpectedly strong, Δ = -7.

View Article and Find Full Text PDF

The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro-nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!