Members of the pancreatic lipase family exhibit both lipase activity toward triacylglycerol and/or phospholipase A(1) (PLA(1)) activity toward certain phospholipids. Some members of the pancreatic lipase family exhibit lysophospholipase activity in addition to their lipase and PLA(1) activities. Two such enzymes, phosphatidylserine (PS)-specific PLA(1) (PS-PLA(1)) and phosphatidic acid (PA)-selective PLA(1)α (PA-PLA(1)α, also known as LIPH) specifically hydrolyze PS and PA, respectively. However, little is known about the mechanisms that determine their substrate specificities. Crystal structures of lipases and mutagenesis studies have suggested that three surface loops, namely, β5, β9, and lid, have roles in determining substrate specificity. To determine roles of these loop structures in the substrate recognition of these PLA(1) enzymes, we constructed a number of PS-PLA(1) mutants in which the three surface loops are replaced with those of PA-PLA(1)α. The results indicate that the surface loops, especially the β5 loop, of PA-PLA(1)α play important roles in the recognition of PA, whereas other structure(s) in PS-PLA(1) is responsible for PS preference. In addition, β5 loop of PS-PLA(1) has a crucial role in lysophospholipase activity toward lysophosphatidylserine. The present study revealed the critical role of lipase surface loops, especially the β5 loop, in determining substrate specificities of PLA(1) enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276474 | PMC |
http://dx.doi.org/10.1194/jlr.M022400 | DOI Listing |
Protein Sci
February 2025
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain.
Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited.
View Article and Find Full Text PDFJ Virol
January 2025
Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery School of Dentistry, Iwate Medical University, Morioka 020-8505, Iwate, Japan.
Narrow band imaging (NBI) magnification endoscopy for the diagnosis of early-stage oral cavity-related cancer and precancerous lesions can recognize oral lesions as brownish areas, and can observe intraepithelial papillary capillary loops (IPCLs) in the mucosa and submucosa to make a qualitative diagnosis of the lesion and highlight the mucosal surface microstructure to facilitate appropriate diagnosis and early treatment. IPCLs are classified from Type 0 to IV: Type 0 is normal mucosa or no blood vessels observed, e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany.
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!