The DOTA macrocyclic ligand can form stable complexes with many cations besides yttrium and lutetium. For this reason, the presence of competing cationic metals in yttrium-90 and lutetium-177 chloride solutions can dramatically influence the radiolabeling yield. The aim of this study was to evaluate the coordination yield of yttrium- and lutetium-DOTATATE complexes when the reaction is performed in the presence of varying amounts of competing cationic impurities. In the first set of experiments, the preparation of the samples was performed by using natural yttrium and lutetium (20.4 nmol). The molar ratio between DOTATATE and these metals was 1 to 1. Metal competitors (Pb(2+), Zn(2+), Cu(2+), Fe(3+), Al(3+), Ni(2+), Co(2+), Cr(3+)) were added separately to obtain samples with varying molar ratio with respect to yttrium or lutetium (0.1, 0.5, 1, 2 and 10). The final solutions were analyzed through ultra high-performance liquid chromatography with an UV detector. In the second set of experiments, an amount of (90)Y or (177)Lu chloride (6 MBq corresponding to 3.3 and 45 pmol, respectively) was added to the samples, and a radio-thin layer chromatography analysis was carried out. The coordination of Y(3+) and Lu(3+) was dramatically influenced by low levels of Zn(2+), Cu(2+) and Co(2+). Pb(2+) and Ni(2+) were also shown to be strong competitors at higher concentrations. Fe(3+) was expected to be a strong competitor, but the effect on the incorporation was only partly dependent on its concentration. Al(3+) and Cr(3+) did not compete with Y(3+) and Lu(3+) in the formation of DOTATATE complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2011.10.015DOI Listing

Publication Analysis

Top Keywords

yttrium lutetium
16
90y 177lu
8
competing cationic
8
set experiments
8
molar ratio
8
zn2+ cu2+
8
y3+ lu3+
8
influence cations
4
cations complexation
4
complexation yield
4

Similar Publications

Development and evaluation of an in-beam PET system for proton therapy monitoring.

Phys Med Biol

January 2025

The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, Wuhan, Hubei, 430074, CHINA.

Objective: In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.

Approach: In this study, we developed a dual-head in-beam PET system for proton therapy monitoring and evaluated its performance.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Phosphaguanidinate yttrium carbene, carbyne and carbide complexes: three distinct C1 functionalities.

Dalton Trans

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai 200438, China.

The phosphaguanidinate rare-earth-metal bis(aminobenzyl) complexes [(PhP)C(NCHPr-2,6)]Ln(CHCH NMe-) (Ln = Y(1-Y) and Lu(1-Lu)) were synthesized by the protonolysis of (PhP)[C(NHR)(NR)] (R = 2,6-(Pr)CH) with Ln(CHCHNMe-) (Ln = Y and Lu). Interestingly, the ring-opening rearrangement product [-MeNCHCHC(NCHPr-2,6)]Lu(CHCHNMe-)[O(CH)PPh] (2) was obtained when the acid-base reaction was carried out in THF solution at 60 °C for 36 h. Additionally, the trinuclear homometallic yttrium multimethyl/methylidene complex {[(PhP)C(NCHPr-2,6)]Y(μ-Me)}(μ-Me)(μ-CH) (3) was synthesized by the treatment of 1-Y with AlMe (2 equiv.

View Article and Find Full Text PDF

Modifying effects of prenatal exposure to rare earth elements on birth outcomes through maternal thyroid function in early pregnancy.

Environ Pollut

December 2024

Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100010, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100010, China. Electronic address:

The potential health effects of exposure to rare earth elements (REEs) remain largely unexplored. This prospective cohort study aimed to elucidate the association between early pregnancy REE exposure and maternal thyroid function, as well as neonatal birth outcomes, in a cohort of pregnant women in Beijing, China. Additionally, the study explored the mediating role of thyroid homeostasis in the effects of REE exposure.

View Article and Find Full Text PDF
Article Synopsis
  • An organ-specific PET scanner can achieve similar sensitivity and higher spatial resolution than whole-body PET scanners by using fewer detectors, which helps to lower costs and improve image clarity.
  • The development focuses on creating high-resolution depth encoding PET detectors with better timing and fewer signal processing channels, allowing for affordable scanners tailored for specific organs.
  • The study employs a combination of silicon photomultiplier (SiPM) arrays and lutetium yttrium orthosilicate (LYSO) arrays to optimize crystal identification, measure interaction depth, and enhance coincidence timing resolutions for improved imaging accuracy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!