The successful clinical outcome of the implanted tissue-engineered bone is dependent on the establishment of a functional vascular network. A gene-enhanced tissue engineering represents a promising approach for vascularization. Our previous study indicated that hypoxia-inducible factor-1α (HIF-1α) can up-regulate the expression of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1) in bone mesenchymal stem cells (BMSCs). The angiogenesis is a co-ordinated process that requires the participation of multiple angiogenic factors. To further explore the angiogenic effect of HIF-1α mediated stem cells, in this study, we systematically evaluated the function of HIF-1α in enhancing BMSCs angiogenesis in vitro and in vivo. A constitutively active form of HIF-1α (CA5) was inserted into a lentivirus vector and transduced into BMSCs, and its effect on vascularization and vascular remodeling was further evaluated in a rat critical-sized calvarial defects model with a gelatin sponge (GS) scaffold. The expression of the key angiogenic factors including VEGF, SDF-1, basic fibroblast growth factor (bFGF), placental growth factor (PLGF), angiopoietin 1 (ANGPT1), and stem cell factor (SCF) at both mRNAs and proteins levels in BMSCs were significantly enhanced by HIF-1α overexpression compared to the in vitro control group. In addition, HIF-1α-over expressing BMSCs showed dramatically improved blood vessel formation in the tissue-engineered bone as analyzed by photography of specimen, micro-CT, and histology. These data confirm the important role of HIF-1α in angiogenesis in tissue-engineered bone. Improved understanding of the mechanisms of angiogenesis may offer exciting therapeutic opportunities for vascularization, vascular remodeling, and bone defect repair using tissue engineering strategies in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2011.11.053 | DOI Listing |
Adv Healthc Mater
January 2025
Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA. Electronic address:
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs.
View Article and Find Full Text PDFJ Biomater Appl
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal.
View Article and Find Full Text PDFTissue Eng Part B Rev
January 2025
Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.
The increasing number of elderly people across the globe has led to a rise in osteoporosis and bone fractures, significantly impacting the quality of life and posing substantial health and economic burdens. Despite the development of tissue-engineered bone constructs and stem cell-based therapies to address these challenges, their efficacy is compromised by inadequate vascularization and innervation during bone repair. Innervation plays a pivotal role in tissue regeneration, including bone repair, and various techniques have been developed to fabricate innervated bone scaffolds for clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!