Traditional drug design is a laborious and expensive process that often challenges the pharmaceutical industries. As a result, researchers have turned to computational methods for computer-assisted molecular design. Recently, genetic and evolutionary algorithms have emerged as efficient methods in solving combinatorial problems associated with computer-aided molecular design. Further, combining genetic algorithms with quantitative structure-property relationship analyses has proved effective in drug design. In this work, we have integrated a new genetic algorithm and nonlinear quantitative structure-property relationship models to develop a reliable virtual screening algorithm for the generation of potential chemical penetration enhancers. The genetic algorithms-quantitative structure-property relationship algorithm has been implemented successfully to identify potential chemical penetration enhancers for transdermal drug delivery of insulin. Validation of the newly identified chemical penetration enhancer molecular structures was conducted through carefully designed experiments, which elucidated the cytotoxicity and permeability of the chemical penetration enhancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467970 | PMC |
http://dx.doi.org/10.1111/j.1747-0285.2011.01293.x | DOI Listing |
Anal Chem
January 2025
Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.
View Article and Find Full Text PDFBackground: SUVN-I7016031 is a novel and selective positive allosteric modulator (PAM) of the M1 subtype of the muscarinic acetylcholine receptors (mAChRs). The proposed primary indication for SUVN-I7016031 is in the treatment of dementia such as Alzheimer's disease dementia (ADD) and Parkinson's disease dementia (PDD). In the current research, the pharmacological properties of SUVN-I7016031 in various types of dementia were investigated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sanford burnham prebys medical discovery institute, San Diego, CA, USA.
Background: A pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid-beta peptide (Aß). Potential treatments targeting Aß production such as γ-secretase inhibitors have had limited success. A promising alternative approach involves addressing early synaptic dysfunction by modulating molecules like striatal-enriched protein tyrosine phosphatase (STEP), whose levels and activity are upregulated by Aß.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design π-extension and donor-acceptor interactions.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China.
Coupling ion exclusion and interaction screening within sub-nanoconfinement channels in novel porous material membranes hold great potential to realize highly efficient ion sieving, particularly for high-performance lithium-ion extraction. Diverse kinds of advanced membranes have been previously reported to realize this goal but with moderate performance and complex operations gained. Herein, these issues are circumvented by preparing the consecutive and intact imine-linked three-dimensional covalent organic framework (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!