Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy. Reporter gene analysis was carried out to determine the spatiotemporal pattern of NCED5 and NCED9 gene expression. GUS activity from the NCED5 promoter was detected in both the embryo and endosperm of developing seeds with maximal staining after mid-development. NCED9 expression was found at early stages in the testa outer integument layer 1, and after mid-development in epidermal cells of the embryo, but not in the endosperm. In accordance with its temporal- and tissue-specific expression, the phenotypic analysis of nced5 nced6 nced9 triple mutant showed the involvement of the NCED5 gene, together with NCED6 and NCED9, in the induction of seed dormancy. In contrast to nced6 and nced9, however, nced5 mutation did not affect the gibberellin required for germination. In vegetative tissues, combining nced5 and nced3 mutations reduced vegetative growth, increased water loss upon dehydration, and decreased ABA levels under both normal and stressed conditions, as compared with nced3. NCED5 thus contributes, together with NCED3, to ABA production affecting plant growth and water stress tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2011.04887.xDOI Listing

Publication Analysis

Top Keywords

nced6 nced9
16
embryo endosperm
12
nced5
8
seed dormancy
8
regulation aba
8
aba production
8
aba
6
nced9
6
epoxycarotenoid cleavage
4
cleavage nced5
4

Similar Publications

REVERSAL OF RDO5 1, a Homolog of Rice Seed Dormancy4, Interacts with bHLH57 and Controls ABA Biosynthesis and Seed Dormancy in Arabidopsis.

Plant Cell

June 2020

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

The control of seed dormancy by abscisic acid (ABA) has been extensively studied, but the underlying mechanism is not fully understood. Here, we report the characterization of two ABA-related seed dormancy regulators in Arabidopsis (): ODR1 (for reversal of ), an ortholog of the rice () Seed dormancy4 (Sdr4), and the basic helix-loop-helix transcription factor bHLH57. , whose transcript levels are directly suppressed by the transcription factor ABA INSENSITIVE3 (ABI3), negatively regulates seed dormancy by affecting ABA biosynthesis and ABA signaling.

View Article and Find Full Text PDF

IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in .

Front Plant Sci

June 2018

Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China.

Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA) promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM) signals are involved with the inhibition of ABA during seed germination and seedling growth.

View Article and Find Full Text PDF

The Arabidopsis MYB96 transcription factor plays a role in seed dormancy.

Plant Mol Biol

March 2015

Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, Republic of Korea.

Seed dormancy facilitates to endure environmental disadvantages by confining embryonic growth until the seeds encounter favorable environmental conditions for germination. Abscisic acid (ABA) and gibberellic acid (GA) play a pivotal role in the determination of the seed dormancy state. ABA establishes seed dormancy, while GA triggers seed germination.

View Article and Find Full Text PDF

Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins.

View Article and Find Full Text PDF

Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!