Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells.

Proc Natl Acad Sci U S A

Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.

Published: October 1990

A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4-kilobase mRNA, designated NB-1, whose expression was decreased greater than 50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[a]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type beta increased its relative abundance. The protein encoded by NB-1 may have Ca2+ binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54746PMC
http://dx.doi.org/10.1073/pnas.87.19.7360DOI Listing

Publication Analysis

Top Keywords

mammary epithelial
8
epithelial cells
8
nb-1 expression
8
breast prostate
8
nb-1
6
down-regulation calmodulin-related
4
calmodulin-related gene
4
gene transformation
4
transformation human
4
human mammary
4

Similar Publications

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Mucinous carcinoma of the breast, also known as colloid carcinoma, is an uncommon type of differentiated adenocarcinoma, representing only 2% of all invasive breast carcinomas. It usually occurs in women ≥ 60 years of age. Mucinous carcinoma is characterized by clusters of epithelial tumour cells suspended in pools of extracellular mucin and is further divided in 2 subgroups, pure and mixed.

View Article and Find Full Text PDF

Effect of the S100A9/AMPK pathway on PM2.5-mediated mouse lung injury.

Iran J Basic Med Sci

January 2025

Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.

Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.

View Article and Find Full Text PDF

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!