A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of microemulsion system for transdermal delivery of itraconazole. | LitMetric

A new oil-in-water microemulsion-based (ME) gel containing 1% itraconazole (ITZ) was developed for topical delivery. The solubility of ITZ in oils and surfactants was evaluated to identify potential excipients. The microemulsion existence ranges were defined through the construction of the pseudoternary phase diagrams. The optimized microemulsion was characterized for its morphology and particle size distribution. The optimized microemulsion was incorporated into polymeric gels of Lutrol F127, Xanthan gum, and Carbopol 934 for convenient application and evaluated for pH, drug content, viscosity, and spreadability. In vitro drug permeation of ME gels was determined across excised rat skins. Furthermore, in vitro antimycotic inhibitory activity of the gels was conducted using agar-cup method and Candida albicans as a test organism. The droplet size of the optimized microemulsion was found to be <100 nm. The optimized Lutrol F 127 ME gel showed pH in the range of 5.68±0.02 and spreadability of 5.75±1.396 gcm/s. The viscosity of ME gel was found to be 1805.535±542.4 mPa s. The permeation rate (flux) of ITZ from prepared ME gel was found to be 4.234 μg/cm/h. The release profile exhibited diffusion controlled mechanism of drug release from ME ITZ gel. The developed ME gels were nonirritant and there was no erythema or edema. The antifungal activity of ITZ showed the widest zone of inhibition with Lutrol F127 ME gel. These results indicate that the studied ME gel may be a promising vehicle for topical delivery of ITZ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217682PMC
http://dx.doi.org/10.4103/2231-4040.79802DOI Listing

Publication Analysis

Top Keywords

optimized microemulsion
12
investigation microemulsion
4
microemulsion system
4
system transdermal
4
transdermal delivery
4
delivery itraconazole
4
itraconazole oil-in-water
4
oil-in-water microemulsion-based
4
microemulsion-based gel
4
gel itraconazole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!