The human cytomegalovirus tegument protein UL69 has been shown to be required for efficient viral replication at low multiplicities of infection. Several functions have been associated with UL69, including its ability to regulate cell cycle progression, translation, and the export of viral transcripts from the nucleus to the cytoplasm. However, it remains unclear which, if any, of these activities contribute to the phenotype observed with the UL69 deletion mutant. UL69 has been shown to interact with the cellular protein SPT6. The functional significance of this interaction has never been examined in the context of an infection. To address this, we generated UL69 mutant viruses that were unable to interact with SPT6 and determined what effect these mutations had on virus replication. Abolishing UL69's ability to interact with the SPT6 protein inhibited virus replication to levels indistinguishable from those observed following infection with the UL69 deletion mutant. Surprisingly, abolishing UL69's interaction with SPT6 also resulted in the impairment of UL69 shuttling activity. Finally, we demonstrate that inhibition of SPT6 expression by short hairpin RNA (shRNA) knockdown inhibits wild-type virus replication. Taken together, our results demonstrate that UL69's ability to interact with SPT6 plays a critical role in viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302422PMC
http://dx.doi.org/10.1128/JVI.06776-11DOI Listing

Publication Analysis

Top Keywords

interact spt6
12
virus replication
12
cellular protein
8
protein spt6
8
required efficient
8
human cytomegalovirus
8
viral replication
8
ul69 deletion
8
deletion mutant
8
abolishing ul69's
8

Similar Publications

During transcription, RNA polymerase II traverses through chromatin, and post-translational modifications including histone methylations mark regions of active transcription. Histone protein H3 lysine 36 trimethylation (H3K36me3), which is established by the histone methyltransferase SETD2, suppresses cryptic transcription, regulates splicing, and serves as a binding site for transcription elongation factors. The mechanism by which the transcription machinery coordinates the deposition of H3K36me3 is not well understood.

View Article and Find Full Text PDF

The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole-genome approaches to map the physical and genetic interactions of TPL at a repressed locus.

View Article and Find Full Text PDF

The bromodomain and extraterminal domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor because of an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, bromodomain-containing protein 4 (BRD4) binds to estrogen receptor binding sites and activates transcription of critical oncogenes such as MYC, independently of its bromodomains.

View Article and Find Full Text PDF

The Bromodomain and Extra-Terminal Domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor due to an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, BRD4 binds to estrogen receptor binding sites and activates transcription of critical oncogenes independently of its bromodomains.

View Article and Find Full Text PDF

The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we have leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model to localize repressive function to two distinct domains. Here, we employed two unbiased whole genome approaches to map the physical and genetic interactions of TPL at a repressed locus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!