Cobinamides are novel coactivators of nitric oxide receptor that target soluble guanylyl cyclase catalytic domain.

J Pharmacol Exp Ther

Department of Internal Medicine, Division of Cardiology, UT Health Science Center in Houston, Medical School, 1941 East Rd., Houston, TX 77054, USA.

Published: March 2012

Soluble guanylyl cyclase (sGC), a ubiquitously expressed heme-containing receptor for nitric oxide (NO), is a key mediator of NO-dependent processes. In addition to NO, a number of synthetic compounds that target the heme-binding region of sGC and activate it in a NO-independent fashion have been described. We report here that dicyanocobinamide (CN2-Cbi), a naturally occurring intermediate of vitamin B(12) synthesis, acts as a sGC coactivator both in vitro and in intact cells. Heme depletion or heme oxidation does not affect CN2-Cbi-dependent activation. Deletion mutagenesis demonstrates that CN2-Cbi targets a new regulatory site and functions though a novel mechanism of sGC activation. Unlike all known sGC regulators that target the N-terminal regulatory regions, CN2-Cbi directly targets the catalytic domain of sGC, resembling the effect of forskolin on adenylyl cyclases. CN2-Cbi synergistically enhances sGC activation by NO-independent regulators 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY41-2272), 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]-acid (cinaciguat or BAY58-2667), and 5-chloro-2-(5-chloro-thiophene-2-sulfonylamino-N-(4-(morpholine-4-sulfonyl)-phenyl)-benzamide sodium salt (ataciguat or HMR-1766). BAY41-2272 and CN2-Cbi act reciprocally by decreasing the EC(50) values. CN2-Cbi increases intracellular cGMP levels and displays vasorelaxing activity in phenylephrine-constricted rat aortic rings in an endothelium-independent manner. Both effects are synergistically potentiated by BAY41-2272. These studies uncover a new mode of sGC regulation and provide a new tool for understanding the mechanism of sGC activation and function. CN2-Cbi also offers new possibilities for its therapeutic applications in augmenting the effect of other sGC-targeting drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286313PMC
http://dx.doi.org/10.1124/jpet.111.186957DOI Listing

Publication Analysis

Top Keywords

sgc activation
12
sgc
9
nitric oxide
8
soluble guanylyl
8
guanylyl cyclase
8
catalytic domain
8
mechanism sgc
8
cn2-cbi
7
cobinamides novel
4
novel coactivators
4

Similar Publications

Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain.

Mol Med

January 2025

Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.

Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.

View Article and Find Full Text PDF

Development of a Second-Generation, Chemical Probe for PIKfyve.

J Med Chem

January 2025

Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

We optimized our highly potent and cell-active chemical probe for phosphatidylinositol-3-phosphate 5-kinase (PIKfyve), SGC-PIKFYVE-1, resulting in compounds with improved potency and demonstrated stability. Use of an in-cell, kinome-wide selectivity panel allowed for confirmation of excellent in-cell selectivity of our lead compound, , and another promising analogue, . Evaluation of the pharmacokinetic (PK) profiles of these two compounds revealed that both are well tolerated systemically and orally bioavailable.

View Article and Find Full Text PDF

Soluble guanylate cyclase stimulators and activators as potential antihypertensive drugs.

Hypertens Res

January 2025

Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.

Poor blood pressure control in treated patients with hypertension is an important topic in the field of hypertension, and an unmet need for new therapeutic drugs remains. Soluble guanylate cyclase (sGC), a key signal transduction enzyme responsible for vasodilation, has attracted increasing interest as a therapeutic target in various cardiovascular diseases. Two different sGC agonists, sGC stimulators and activators, can increase its enzymatic activity in reduced and oxidized/apo forms, respectively.

View Article and Find Full Text PDF

Unveiling the interplay between soluble guanylate cyclase activation and redox signalling in stroke pathophysiology and treatment.

Biomed Pharmacother

January 2025

Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:

Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.

View Article and Find Full Text PDF

Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!