Serotonin (5-HT)-induced long-term facilitation (LTF) of the Aplysia sensorimotor synapse depends on enhanced gene expression and protein synthesis, but identification of the genes whose expression and regulation are necessary for LTF remains incomplete. In this study, we found that one such gene is synapsin, which encodes a synaptic vesicle-associated protein known to regulate short-term synaptic plasticity. Both synapsin mRNA and protein levels were increased by 5-HT. Upregulation of synapsin protein occurred in presynaptic sensory neurons at neurotransmitter release sites. To investigate the molecular mechanisms underlying synapsin regulation, we cloned the promoter region of Aplysia synapsin, and found that the synapsin promoter contained a cAMP response element (CRE), raising the possibility that the transcriptional activator CRE-binding protein 1 (CREB1) mediates 5-HT-induced regulation of synapsin. Indeed, binding of CREB1 to the synapsin promoter was increased following treatment with 5-HT. Furthermore, increased acetylation of histones H3 and H4 and decreased association of histone deacetylase 5 near the CRE site are consistent with transcriptional activation by CREB1. RNA interference (RNAi) targeting synapsin mRNA blocked the 5-HT-induced increase in synapsin protein levels and LTF; in the absence of 5-HT treatment, basal synapsin levels were unaffected. These results indicate that the 5-HT-induced regulation of synapsin levels is necessary for LTF and that this regulation is part of the cascade of synaptic events involved in the consolidation of memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407595 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2816-11.2011 | DOI Listing |
Exp Neurol
December 2024
Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America. Electronic address:
Dendritic and axonal plasticity, which mediates neurobiological recovery after a stroke, critically depends on the mitochondrial function of neurons. To investigate, in vivo, neuronal mitochondrial function at the stroke recovery stage, we employed Mito-tag mice combined with cerebral cortical infection of AAV9 produced from plasmids carrying Cre-recombinase controlled by two neuronal promoters, synapsin-I (SYN1) and calmodulin-kinase IIa to induce expression of a hemagglutinin (HA)-tagged enhanced green fluorescence protein (EGFP) that localizes to mitochondrial outer membranes of SYN1 positive (SYN) and CaMKIIa positive (CaMKIIa) neurons. These mice were then subjected to permanent middle cerebral artery occlusion (MCAO) and sacrificed 14 days post stroke.
View Article and Find Full Text PDFAlzheimers Res Ther
December 2024
Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.
Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.
Toxicol Appl Pharmacol
December 2024
Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China. Electronic address:
Cenobamate (CNB) is a novel anti-seizure medication with significant efficacy in treating epilepsy. However, in clinical trials, the most common adverse reactions observed in patients are central nervous system (CNS) symptoms. In animal studies, administration of CNB during pregnancy or lactation has been associated with adverse effects on neurodevelopment in offspring.
View Article and Find Full Text PDFFront Neurosci
November 2024
Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China.
Synaptic efficacy is critical for memory formation and consolidation. Accumulating evidence suggest that synapses are impaired during Wilson's disease (WD), contributing to neuronal dysfunction and cognitive decline. WD is a prototypical condition among the copper metabolism disorders.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!