Coupling of spindle orientation to cellular polarity is a prerequisite for epithelial asymmetric cell divisions. The current view posits that the adaptor Inscuteable (Insc) bridges between Par3 and the spindle tethering machinery assembled on NuMALGNGαi(GDP), thus triggering apico-basal spindle orientation. The crystal structure of the Drosophila ortholog of LGN (known as Pins) in complex with Insc reveals a modular interface contributed by evolutionary conserved residues. The structure also identifies a positively charged patch of LGN binding to an invariant EPE-motif present on both Insc and NuMA. In vitro competition assays indicate that Insc competes with NuMA for LGN binding, displaying a higher affinity, and that it is capable of opening the LGN conformational switch. The finding that Insc and NuMA are mutually exclusive interactors of LGN challenges the established model of force generators assembly, which we revise on the basis of the newly discovered biochemical properties of the intervening components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248549PMC
http://dx.doi.org/10.1073/pnas.1113077108DOI Listing

Publication Analysis

Top Keywords

asymmetric cell
8
cell divisions
8
spindle orientation
8
lgn binding
8
insc numa
8
lgn
6
insc
5
inscuteable numa
4
numa proteins
4
proteins bind
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!