A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linear and non-linear relationships between soil sorption and hydrophobicity: model, validation and influencing factors. | LitMetric

Linear and non-linear relationships between soil sorption and hydrophobicity: model, validation and influencing factors.

Chemosphere

Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Department of Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024, PR China.

Published: February 2012

The hydrophobic parameter represented by the octanol/water partition coefficient (logP) is commonly used to predict the soil sorption coefficient (K(oc)). However, a simple non-linear relationship between logK(oc) and logP has not been reported in the literature. In the present paper, soil sorption data for 701 compounds was investigated. The results show that logK(oc) is linearly related to logP for compounds with logP in the range of 0.5-7.5 and non-linearly related to logP for the compounds in a wide range of logP. A non-linear model has been developed between logK(oc) and logP for a wide range of compounds in the training set. This model was validated in terms of average error (AE), average absolute error (AAE) and root-mean squared error (RMSE) by using an external test set with 107 compounds. Nearly the same predictive capacity was observed in comparison with existing models. However, this non-linear model is simple, and uses only one parameter. The best model developed in this paper is a non-linear model with six correction factors for six specific classes of compounds. This model can well predict logK(oc) for 701 diverse compounds with AAE = 0.37. The reasons for systemic deviations in these groups may be attributed to the difference of sorption mechanism for hydrophilic/polar compounds, low solubility for highly hydrophobic compounds, hydrolysis of esters in solution, volatilization for volatile compounds and highly experimental errors for compounds with extremely high or low sorption coefficients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2011.11.001DOI Listing

Publication Analysis

Top Keywords

soil sorption
12
non-linear model
12
compounds
11
logkoc logp
8
logp compounds
8
wide range
8
model developed
8
model
7
logp
7
sorption
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!