Background: Driven essentially by random genetic drift, subfunctionalization has been identified as a possible non-adaptive mechanism for the retention of duplicate genes in small-population species, where widespread deleterious mutations are likely to cause complementary loss of subfunctions across gene copies. Through subfunctionalization, duplicates become indispensable to maintain the functional requirements of the ancestral locus. Yet, gene duplication produces a dosage imbalance in the encoded proteins and thus, as investigated in this paper, subfunctionalization must be subject to the selective forces arising from the fitness bottleneck introduced by the duplication event.
Results: We show that, while arising from random drift, subfunctionalization must be inescapably subject to selective forces, since the diversification of expression patterns across paralogs mitigates duplication-related dosage imbalances in the concentrations of encoded proteins. Dosage imbalance effects become paramount when proteins rely on obligatory associations to maintain their structural integrity, and are expected to be weaker when protein complexation is ephemeral or adventitious. To establish the buffering effect of subfunctionalization on selection pressure, we determine the packing quality of encoded proteins, an established indicator of dosage sensitivity, and correlate this parameter with the extent of paralog segregation in humans, using species with larger population -and more efficient selection- as controls.
Conclusions: Recognizing the role of subfunctionalization as a dosage-imbalance buffer in gene duplication events enabled us to reconcile its mechanistic nonadaptive origin with its adaptive role as an enabler of the evolution of genetic redundancy. This constructive role was established in this paper by proving the following assertion: If subfunctionalization is indeed adaptive, its effect on paralog segregation should scale with the dosage sensitivity of the duplicated genes. Thus, subfunctionalization becomes adaptive in response to the selection forces arising from the fitness bottleneck imposed by gene duplication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280233 | PMC |
http://dx.doi.org/10.1186/1471-2164-12-604 | DOI Listing |
G3 (Bethesda)
January 2025
Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Background: Citrin deficiency (CD) is an autosomal recessive metabolic disorder affecting the urea cycle and energy production. Diagnosis involves measuring ammonia, amino acid levels (eg: citrulline), with confirmation through solute carrier family 25 member 13 (SLC25A13) gene mutation analysis. Herein, we present a case report of a variant in the SLC25A13 gene that has not been previously reported in the literature.
View Article and Find Full Text PDFThromb Res
January 2025
Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China. Electronic address:
Background: Protein S deficiency is a rare inherited disease. We report the case of a young man who unexpectedly developed isolated cortical vein thrombosis (ICoVT) associated with a novel PROS1 mutation.
Methods: Clinical symptoms were recorded, and physical examinations conducted.
Int J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!