Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/π bonding and molecule-surface interactions produces a well-defined "magic" dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/π interaction. This work points out new possibilities for chemical functionalization of π-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn203952eDOI Listing

Publication Analysis

Top Keywords

supramolecular self-assembly
12
ch/π interaction
8
attractive interactions
8
supramolecular clusters
8
supramolecular
6
self-assembly π-conjugated
4
π-conjugated hydrocarbons
4
hydrocarbons cooperative
4
cooperative ch/π
4
interaction supramolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!