Background: Platelet activation is relevant to a variety of coronary heart diseases. Our previous studies revealed that sesamol possesses potent antiplatelet activity through increasing cyclic AMP formation. Although platelets are anucleated cells, they also express the transcription factor, NF-κB, that may exert non-genomic functions in platelet activation. Therefore, we further investigated the inhibitory roles of sesamol in NF-κB-mediated platelet function.
Methods: Platelet aggregation, Fura 2-AM fluorescence, and immunoblotting analysis were used in this study.
Results: NF-κB signaling events, including IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation, were markedly activated by collagen (1 μg/ml) in washed human platelets, and these signaling events were attenuated by sesamol (2.5~25 μM). Furthermore, SQ22536 and ODQ, inhibitors of adenylate cyclase and guanylate cyclase, respectively, strongly reversed the sesamol (25 μM)-mediated inhibitory effects of IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation stimulated by collagen. The protein kinase A (PKA) inhibitor, H89, also reversed sesamol-mediated inhibition of IκBα degradation. Moreover, BAY11-7082, an NF-κB inhibitor, abolished IκBα degradation, phospholipase C (PLC)γ2 phosphorylation, protein kinase C (PKC) activation, [Ca(2+)]i mobilization, and platelet aggregation stimulated by collagen. Preincubation of platelets with the inhibitors, SQ22536 and H89, both strongly reversed sesamol-mediated inhibition of platelet aggregation and [Ca(2+)]i mobilization.
Conclusions: Sesamol activates cAMP-PKA signaling, followed by inhibition of the NF-κB-PLC-PKC cascade, thereby leading to inhibition of [Ca(2+)]i mobilization and platelet aggregation. Because platelet activation is not only linked to hemostasis, but also has a relevant role in inflammation and metastasis, our data demonstrating that inhibition of NF-κB interferes with platelet function may have a great impact when these types of drugs are considered for the treatment of cancer and various inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258208 | PMC |
http://dx.doi.org/10.1186/1423-0127-18-93 | DOI Listing |
Immunology
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.
Platelets and neutrophils are among the most abundant cell types in peripheral blood. Beyond their traditional roles in thrombosis and haemostasis, they also play an active role in modulating immune responses. Current knowledge on the role of platelet-neutrophil interactions in the immune system has been rapidly expanding.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Anhui, China.
Objective: To investigate the characteristics of Adult-onset Still's disease (AOSD) patients with macrophage activation syndrome (MAS) and explore the risk factors for the development of MAS.
Study Design: A case-control study. Place and Duration of the Study: Department of Rheumatology and Immunology, the Second Hospital of Anhui Medical University, Anhui, China, from January 2008 to June 2024.
Biomater Adv
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico. Electronic address:
Current hemodialysis treatments can cause adverse effects, many of which are linked to the membranes used in the process. These issues are being addressed through new materials and technologies, making it urgent to establish minimum guidelines for evaluating such membranes. This review proposes standardizing the biological tests and variables to evaluate the performance of new membranes, aiming to replicate hemodialysis conditions closely.
View Article and Find Full Text PDFThromb Res
January 2025
Institute for Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.
MedComm (2020)
February 2025
Department of Emergency Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China.
Disseminated intravascular coagulation (DIC) is a complex and serious condition characterized by widespread activation of the coagulation cascade, resulting in both thrombosis and bleeding. This review aims to provide a comprehensive overview of DIC, emphasizing its clinical significance and the need for improved management strategies. We explore the primary causes of DIC, including sepsis, trauma, malignancies, and obstetric complications, which trigger an overactive coagulation response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!