Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Studies of natural hepatitis B virus infection must be restricted to humans or primates due to viral species-specificity. Alternative hepadnavirus animal models, e.g., woodchuck hepatitis virus in captive woodchucks, are not convenient, while in transgenic mice hepatitis B virus or viral proteins are expressed permanently through integrated genomes. Availability of small animal models that are easily produced and permit rapid assays will be quite helpful.
Aims: We examined whether transplantation of human cells in the peritoneal cavity of mice will generate an appropriate mass of cells with hepatitis B virus replication.
Methods: HepG2 2.2.15 cells were transplanted intraperitoneally into NOD/SCID mice. Replication of hepatitis B virus and viral gene expression was determined by analysis of blood and transplanted tissues with viral DNA and hepatitis B core antigen expression. Interruption of viral replication was examined.
Results: After intraperitoneal transplantation with microcarrier scaffolds, 2.2.15 cells engrafted and proliferated in the peritoneal cavity of NOD/SCID mice. Hepatitis B virus replicated in transplanted 2.2.15 cells as shown by hepatitis B core antigen expression. Moreover, viral particles were secreted into the blood. Hepatitis B virus replication was susceptible to conventional antiviral drug therapy, such as lamivudine, as well as experimental antiviral gene therapy with a synthetic mimic of an antiviral cellular microRNA.
Conclusions: Intraperitoneal transplantation of human cells rapidly provided reservoirs of hepatitis B virus in mice. This simple xenotransplantation approach will be effective and convenient for studies of hepatitis B and other human viruses in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693184 | PMC |
http://dx.doi.org/10.1111/j.1399-3089.2011.00675.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!