The dynamics of molecules under strong laser pulses is characterized by large Stark effects that modify and reshape the electronic potentials, known as laser-induced potentials (LIPs). If the time scale of the interaction is slow enough that the nuclear positions can adapt to these externally driven changes, the dynamics proceeds by adiabatic following, where the nuclei gain very little kinetic energy during the process. In this regime we show that the molecular dynamics can be simulated quite accurately by a semiclassical surface-hopping scheme formulated in the adiabatic representation. The nuclear motion is then influenced by the gradients of the laser-modified potentials, and nonadiabatic couplings are seen as transitions between the LIPs. As an example, we simulate the process of adiabatic passage by light induced potentials in Na(2) using the surface-hopping technique both in the diabatic representation based on molecular potentials and in the adiabatic representation based on LIPs, showing how the choice of the representation is crucial in reproducing the results obtained by exact quantum dynamical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp208997r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!