The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn(2+) finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression. DYNLL1 levels are reduced by ∼10-fold in the absence of ASCIZ in human, mouse and chicken cells. ASCIZ binds directly to the Dynll1 promoter and regulates its activity in a Zn(2+) finger-dependent manner. DYNLL1 protein in turn interacts with ten binding sites in the ASCIZ transcription activation domain, and high DYNLL1 levels inhibit the transcriptional activity of ASCIZ. In addition, DYNLL1 was also required for DNA damage-induced ASCIZ focus formation. The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNLL1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs. The ASCIZ-DYNLL1 feedback loop represents a novel mechanism for auto-regulation of gene expression, where the gene product directly inhibits the transcriptional activator while bound at its own promoter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270970 | PMC |
http://dx.doi.org/10.1074/jbc.M111.306019 | DOI Listing |
Elife
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States.
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Vanderbilt University, Nashville, TN, United States.
Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.
View Article and Find Full Text PDFRNA Biol
December 2025
Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan.
This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the analyses.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.
Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.
Head Neck Pathol
January 2025
Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Purpose: Recurrent diffuse-type tenosynovial giant cell tumor: Clinical presentation, Diagnosis, and Management.
Background: Tenosynovial giant cell tumor (TGCT), is a neoplasm arising from synovial joints, bursae, or tendon sheaths. The initial clinical symptoms are vague and non-diagnostic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!