Background: Human infection with influenza A(H1N1) 2009 was first identified in the United States on 15 April 2009 and on 11 June 2009, WHO declared that the rapidly spreading swine-origin influenza virus constituted a global pandemic. We evaluated the seroprevalence of influenza A(H1N1) 2009 virus on a large public University campus, as well as disparities in demographic, symptomatic and vaccination characteristics of participants.
Methods: Using a cross-sectional study design, sera was collected from volunteers and then tested for the presence of antibodies to the virus using a ≥ 1:40 dilution cut-off by hemagglutination inhibition assay. In conjunction, participants were asked to complete a questionnaire allowing us to estimate risk factors for infection in this population, as well as distinguish artificially derived antibodies from naturally derived antibodies.
Results: 300 total participants were recruited and tested. 158 (52.6%) tested positive for influenza A(H1N1) 2009 via hemagglutination inhibition assay using a ≥ 1:40 dilution cut-off. 86 people (54.4%) tested positive for H1N1 but did not report experiencing symptoms during the pandemic meeting the May 2010 CDC definition of influenza-like illness. Furthermore, of those individuals who reported that they had received the H1N1 vaccine, 16% did not test positive.
Conclusions: Overall, 52.7% of the total study population tested positive for influenza A(H1N1) 2009. 54.4% of those who tested positive for influenza A(H1N1) 2009 using the ≥ 1:40 dilution cut-off on the hemagglutination inhibition assay in this study population did not report experiencing symptoms during the pandemic meeting the May 2010 CDC definition of influenza-like illness. 16% of those who reported receiving the H1N1 vaccine did not test positive by HAI. We also found that vaccination coverage for H1N1 vaccine was poor among Blacks and Latinos, despite the fact that vaccine was readily available at no cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260184 | PMC |
http://dx.doi.org/10.1186/1471-2458-11-922 | DOI Listing |
Food Environ Virol
January 2025
Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection.
View Article and Find Full Text PDFPLoS One
January 2025
Seqirus S.r.l., Monteriggioni (Siena), Italy.
Objective: In Europe, the age indication for the MF59-adjuvanted quadrivalent influenza vaccine (aQIV) has recently been extended from ≥65 to ≥50 years. Considering that the earliest approval of its trivalent formulation (aTIV) in Italy was for people aged ≥12 years, we aimed to systematically appraise data on the immunogenicity, efficacy, and safety of aTIV/aQIV in non-elderly adults.
Methods: A systematic literature review was conducted according to the available guidelines and studies were searched in MEDLINE, Biological Abstracts, Web of Science, Cochrane Library and clinical trial registries.
Nat Commun
January 2025
School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.
View Article and Find Full Text PDFViruses
December 2024
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134 Florence, Italy.
Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.
Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.
Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).
Vaccines (Basel)
December 2024
The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
Background: Influenza remains a significant public health challenge, with vaccination being a substantial way to prevent it. Cell-cultured influenza vaccines have emerged to improve on the drawbacks of egg-based vaccines, but there are few studies focusing on T cell immunity with both types of vaccines. Therefore, we studied the following 2022-2023 seasonal influenza vaccines with a standard dose and high dose: cell-based (C_sd and C_hd) and egg-based (E_sd and E_hd) vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!