Background: Following colonization of new habitats and subsequent selection, adaptation to environmental conditions might be expected to be rapid. In a mountain lake in Norway, Lesjaskogsvatnet, more than 20 distinct spawning demes of grayling have been established since the lake was colonized, some 20-25 generations ago. The demes spawn in tributaries consistently exhibiting either colder or warmer temperature conditions during spawning in spring and subsequent early development during early summer. In order to explore the degree of temperature-related divergence in early development, a multi-temperature common-garden experiment was performed on embryos from four different demes experiencing different spring temperatures.
Results: Early developmental characters were measured to test if individuals from the four demes respond differently to the treatment temperatures. There was clear evidence of among-deme differences (genotype - environment interactions) in larval growth and yolk-to-body-size conversion efficiency. Under the cold treatment regime, larval growth rates were highest for individuals belonging to cold streams. Individuals from warm streams had the highest yolk-consumption rate under cold conditions. As a consequence, yolk-to-body-mass conversion efficiency was highest for cold-deme individuals under cold conditions. As we observed response parallelism between individuals from demes belonging to similar thermal groups for these traits, some of the differentiation seems likely to result from local adaptation
Conclusion: The observed differences in length at age during early larval development most likely have a genetic component, even though both directional and random processes are likely to have influenced evolutionary change in the demes under study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252335 | PMC |
http://dx.doi.org/10.1186/1471-2148-11-360 | DOI Listing |
Int J Mol Sci
December 2024
School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the terpenoid biosynthesis pathway, responsible for converting isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) into farnesyl pyrophosphate (FPP). In crustaceans, FPPS plays an important role in various physiological processes, particularly in synthesizing the crustacean-specific hormone methyl farnesoate (MF). This study analyzed the evolutionary differences in the physicochemical properties, subcellular localization, gene structure, and motif composition of FPPS in (named NdFPPS) compared to other species.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy.
is a complex species incorporating a great variety of vegetable types, including cabbage, cauliflower, broccoli, kale, and others. Southern Italy, and especially the Puglia region, is rich in landraces. In this study, genotyping-by-sequencing (GBS) was applied to a germplasm panel of 82 samples, mostly landraces and some commercial varieties, belonging to various morphotypes of .
View Article and Find Full Text PDFDev Cell
December 2024
Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain. Electronic address:
Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in Arabidopsis thaliana operates as two distinct modules with different functions in the bryophyte Marchantia polymorpha.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFNeurosci Res
January 2025
Center for Brain Behavior and Metabolism, University of Lübeck, Germany. Electronic address:
Pronouns create cohesive links in discourse by referring to previously mentioned elements. Here, we focus on pronominalization during speech production in three experiments employing ERP and fMRI methodologies. Participants were asked to produce two short sentences describing a man or woman using an object.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!