Fusarium head blight (FHB), caused by Fusarium graminearum sensu stricto (s.s.), causes tremendous annual yield losses in wheat worldwide. Variation of aggressiveness of isolates from individual field populations in terms of FHB infection and deoxynivalenol (DON) concentration in the host are important population parameters reflecting parasitic ability. Our main objective was to estimate the variation of both traits within three populations of F. graminearum s.s., each consisting of 30 single-spore isolates collected from small wheat fields in Germany, and to compare it with 11 isolates of a collection (F. graminearum collection) from four countries. The same isolates were characterized using 19 single-sequence repeat markers. All isolates were spray inoculated on a moderately resistant spring wheat cultivar at two field locations over 2 years (i.e., in four environments). The genotypic proportion of phenotypic variance (σ(2)(G)) within populations was significant (P < 0.01) for both traits, and the σ(2)(G) × environment interaction was even more important for mean FHB severity. Ranges in mean FHB severity and DON concentration in the host were only slightly smaller for the field populations than for the F. graminearum collection. Both traits were significantly (P < 0.05) correlated within and across populations. A further partitioning of σ(2)(G) revealed 72% of σ(2)(G) within and 28% of σ(2)(G) across populations for both traits. Molecular variance of the three populations was similarly distributed (73.6% within versus 26.4% between populations). In view of this high within-field variation for traits of parasitic ability and selection, neutral molecular markers, multiple resistance genes of different origin should be employed in wheat breeding programs to obtain a long-term stable FHB resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-06-11-0162 | DOI Listing |
Cladistics
December 2024
Entomologie, Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, Stuttgart, 70191, Germany.
Each published phylogeny is a potential contribution to the synthesis of the Tree of Life and countless downstream projects. Steps are needed for fully synthesizable science, but only a minority of studies achieve these. We here review the range of phylogenetic presentation and note aspects that hinder further analysis.
View Article and Find Full Text PDFSensors (Basel)
October 2024
Department of Food, Agricultural, and Biological Engineering, Ohio State University, 590 Woody Hayes Dr, Columbus, OH 43210, USA.
Plant counting is a critical aspect of crop management, providing farmers with valuable insights into seed germination success and within-field variation in crop population density, both of which are key indicators of crop yield and quality. Recent advancements in Unmanned Aerial System (UAS) technology, coupled with deep learning techniques, have facilitated the development of automated plant counting methods. Various computer vision models based on UAS images are available for detecting and classifying crop plants.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Agriculture, Food & Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
Spatial variability in soil pH is a major contributor to within-field variations in soil fertility and crop productivity. An improved understanding of the spatial variability of soil pH within agricultural fields is required to determine liming requirements for precision farming. This study with the use of proximal sensors, firstly assessed the spatial pattern of soil pH and how it can be used to determine site-specific, spatially variable lime requirements.
View Article and Find Full Text PDFEcol Evol
August 2024
Department of Soil Science Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences Gödöllő Hungary.
The Eurasian woodcock prefers habitats where its main prey, earthworms, can be found in higher densities. Although they are forest-dwelling birds, they regularly visit pastures and natural grasslands at night, where earthworm abundance is generally higher. However, there is little information on fine-scale habitat use in relation to variation in habitat characteristics and prey availability, particularly beyond the breeding season.
View Article and Find Full Text PDFFloral plantings adjacent to crops fields can recruit populations of natural enemies by providing flower nectar and non-crop prey to increase natural pest regulation. Observed variation in success rates might be due to changes in the unseen community of endosymbionts hosted by many herbivorous insects, of which some can confer resistance to natural enemies, for example, parasitoid wasps. Reduced insect control may occur if highly protective symbiont combinations increase in frequency via selection effects, and this is expected to be stronger in lower diversity systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!