Agricultural non-point source pollution is one of the major causes of water quality deterioration. Based on the analysis of the spatial discharge characteristics and intensity of major pollutants from the agricultural pollution source, the establishment of spatial management subzones for controlling agricultural non-point pollution and a design of a plan for total load control of pollutants from each subzone is an important way to improve the efficiency of control measures. In this paper the Four Lake basin in Hubei Province is adopted as the research case region and a systematic research of the control countermeasures of agricultural non-point pollution based on the catchment scale is carried out. The results shows that in the Four Lake basin, the COD, total nitrogen, total phosphorus and ammonia nitrogen load of the water environment are mainly caused by agricultural non-point pollution. These four kinds of non-point source pollutants respectively account for 67.6%, 82.2%, 84.7% and 50.9% of the total pollutant discharge amount in the basin. The analysis of the spatial discharge characteristics of non-point source pollutants in the Four Lake basin shows that the major contributor source regions of non-point source pollutant in the basin are the four counties, including Honghu, Jianli, Qianjiang and Shayang where the aquatic and livestock production are relatively developed. According to the spatial discharge characteristics of the pollutants and the evaluation of the discharge intensity of pollutants, the Four Lake basin is divided into three agricultural non-point pollution management subzones, which including Changhu upstream aquatic and livestock production pollution control subzone, Four-lake trunk canal rural non-point source pollution control subzone and Honghu aquatic production pollution control subzone. Specific pollution control measures are put forward for each subzone. With a comprehensive consideration of the water quality amelioration and the allowable discharge of pollutants, a total load control solution is designed for the three non-point pollution management subzones, so as to fulfill the requirements of all indices of the monitoring sites and the requirements for the allowable discharge of pollutants of the water. Among the major pollutants, the major COD reduction area includes the Four-lake trunk canal subzone and the Honghu Lake subzone, which respectively account for 43% and 42% of the total COD reduction amount; the major ammonia nitrogen reduction area includes the Four-lake trunk canal subzone, accounting for 66% of the total ammonia nitrogen reduction amount; the major total nitrogen reduction area covers the Four-lake trunk canal subzone and the Honghu Lake subzone, accounting for 42% and 31% of the total nitrogen reduction amount in the basin respectively; the major total phosphorus reduction area is the Four-lake trunk canal subzone, accounting for 53% of the total phosphorus reduction amount in the basin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

non-point source
24
agricultural non-point
20
non-point pollution
20
four-lake trunk
20
trunk canal
20
discharge characteristics
16
lake basin
16
pollution control
16
reduction area
16
canal subzone
16

Similar Publications

Inoculation with effective microorganisms agent enhanced fungal diversity in the secondary fermentation process.

J Environ Manage

January 2025

Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.

Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed.

View Article and Find Full Text PDF

The study of terrestrial phosphorus inflow (hereafter referred to as phosphorus inflow) fluxes is essential for controlling non-point source (NPS) pollution. The SWAT model was successfully used to simulate phosphorus inflow fluxes in the Dongting Lake area, while a hybrid model (LSTM and SWAT) was developed and validated for predicting the reduction in phosphorus inflow fluxes among rivers based on three typical reduction scenarios: agricultural control, livestock and poultry reduction, and soil and water conservation measures. The results showed that the inflow flux of TP was 3.

View Article and Find Full Text PDF

This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities.

View Article and Find Full Text PDF

Bioretention systems offer advantages in controlling non-point source pollution from runoff rainwater. However, the systems frequently encounter challenges, including insufficient stability of nitrogen and phosphorus removal. Limited research has been performed on bioretention systems which integrate actual data from non-point source pollution cases for the quantitative and qualitative refinement of initial and non-initial rainwater.

View Article and Find Full Text PDF

Accurate analysis of surface water pollution mechanisms is critical for effective environmental restoration and protection. However, evaluation methods for small watersheds with dense populations and complex pollution sources remain limited. This study integrates partial least squares structural equation modeling (PLS-SEM) with fluorescence fingerprinting data from excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) to investigate nutrient sources in rivers of southeastern China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!