The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT) networks. The SWCNT networks are synthesized on Al(2)O(3)-deposted SiO(2)/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD). The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO(2) and NH(3) vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO(2) and 24 ppm for NH(3).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231699 | PMC |
http://dx.doi.org/10.3390/s110807763 | DOI Listing |
Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.
View Article and Find Full Text PDFFront Chem
December 2024
Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom.
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, University of Gujrat, Gujrat, 50700, Pakistan.
This study is the application of a recurrent neural networks with Bayesian regularization optimizer (RNNs-BRO) to analyze the effect of various physical parameters on fluid velocity, temperature, and mass concentration profiles in the Darcy-Forchheimer flow of propylene glycol mixed with carbon nanotubes model across a stretched cylinder. This model has significant applications in thermal systems such as in heat exchangers, chemical processing, and medical cooling devices. The data-set of the proposed model has been generated with variation of various parameters such as, curvature parameter, inertia coefficient, Hartmann number, porosity parameter, Eckert number, Prandtl number, radiation parameter, activation energy variable, Schmidt number and reaction rate parameter for different scenarios.
View Article and Find Full Text PDFAdv Mater
December 2024
Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Semiconducting single-wall carbon nanotubes (s-SWCNTs) represent one of the most promising materials for surpassing Moore's Law and developing the next generation of electronic devices. Despite numerous developed approaches, reducing the contact resistance of s-SWCNTs networks remains a significant challenge in achieving further enhancements in electronic performance. In this study, antimony triiodide (SbI) is efficiently encapsulated within high-purity s-SWCNTs films at low temperatures, forming 1D SbI@s-SWCNTs vdW heterostructures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!