In this paper a long-range wireless mesh network system is presented. It consists of three main parts: Remote Terminal Units (RTUs), Base Terminal Units (BTUs) and a Central Server (CS). The RTUs share a wireless network transmitting in the industrial, scientific and medical applications ISM band, which reaches up to 64 Km in a single point-to-point communication. A BTU controls the traffic within the network and has as its main task interconnecting it to a Ku-band satellite link using an embedded microcontroller-based gateway. Collected data is stored in a CS and presented to the final user in a numerical and a graphical form in a web portal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231685PMC
http://dx.doi.org/10.3390/s110707141DOI Listing

Publication Analysis

Top Keywords

long-range wireless
8
wireless mesh
8
mesh network
8
terminal units
8
network
4
network weather
4
weather monitoring
4
monitoring unfriendly
4
unfriendly geographic
4
geographic conditions
4

Similar Publications

Narrow Band-Wireless Wide Area Networking (NB-WWAN) technologies are becoming more popular across a wide range of application domains due to their ability to provide spatially distributed and reliable wireless connectivity in addition to offering low data rates, low bandwidth, long-range, and long battery life. For functional testing and performance assessments, the wide range of wireless technology alternatives within this category poses several difficulties. At the device level, it is necessary to address issues such as resource limitations, complex protocols, interoperability, and reliability, while at the network level, challenges include complex topologies and wireless channel/signal propagation problems.

View Article and Find Full Text PDF

Outdoor long-range terahertz (THz) communications often come at the expense of transmission rate. Moreover, the practicability of the single polarization optical/THz link, which is commonly used in the previous long-range THz demonstrations based on photonics, is extremely limited by the following two fatal defects. One is relying on active polarization control, and the other is not supporting the transparent bridging of optical polarization division multiplexed (PDM) signals for mature coherent optical communication networks.

View Article and Find Full Text PDF

Ultra-sensitivity in reconstructed exceptional systems.

Natl Sci Rev

December 2024

Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China.

Sensors are of fundamental importance and widely used in modern society, such as in industry and environmental monitoring, biomedical sample ingredient analysis and wireless networks. Although numerous sensors have been developed, there is a continuous demand for sensors with increased sensitivity, to detect signals that were previously undetectable. Recently, non-Hermitian degeneracies, also known as exceptional points (EPs), have attracted attention as a way of improving the responsiveness of sensors.

View Article and Find Full Text PDF

This work proposes a weak signal detection method based on pulse width counting (PWC) for the on-off keying (OOK) underwater wireless optical communication (UWOC) system with an analog mode photomultiplier tube (PMT) detector. The signal output model of the analog mode PMT in weak light communication and the influence of pulse overlap are investigated. We experimentally evaluate the proposed algorithm under different sampling rates, detection thresholds, data rates as well as received optical powers (ROPs), and compare the performance of the proposed approach with that of pulse amplitude detection and pulse peak counting.

View Article and Find Full Text PDF

Underground mines are considered one of the riskiest facilities for human activities due to numerous accidents and geotechnical failures recorded worldwide over the last century, which have resulted in unsafe labor conditions, poor health outcomes, injuries, and fatalities. One significant cause of these accidents is the inadequate or nonexistent capacity for the real-time monitoring of safety conditions in underground mines. In this context, new emerging technologies linked to the Industry 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!