A single low cost inertial measurement unit (IMU) is often used in conjunction with GPS to increase the accuracy and improve the availability of the navigation solution for a pedestrian navigation system. This paper develops several fusion algorithms for using multiple IMUs to enhance performance. In particular, this research seeks to understand the benefits and detriments of each fusion method in the context of pedestrian navigation. Three fusion methods are proposed. First, all raw IMU measurements are mapped onto a common frame (i.e., a virtual frame) and processed in a typical combined GPS-IMU Kalman filter. Second, a large stacked filter is constructed of several IMUs. This filter construction allows for relative information between the IMUs to be used as updates. Third, a federated filter is used to process each IMU as a local filter. The output of each local filter is shared with a master filter, which in turn, shares information back with the local filters. The construction of each filter is discussed and improvements are made to the virtual IMU (VIMU) architecture, which is the most commonly used architecture in the literature. Since accuracy and availability are the most important characteristics of a pedestrian navigation system, the analysis of each filter's performance focuses on these two parameters. Data was collected in two environments, one where GPS signals are moderately attenuated and another where signals are severely attenuated. Accuracy is shown as a function of architecture and the number of IMUs used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231672 | PMC |
http://dx.doi.org/10.3390/s110706771 | DOI Listing |
Int Conf Indoor Position Indoor Navig
October 2024
Department of Computer Science & Engineering, University of California, Santa Cruz, Santa Cruz, USA.
Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Traditional Vision-and-Language Navigation (VLN) tasks require an agent to navigate static environments using natural language instructions. However, real-world road conditions such as vehicle movements, traffic signal fluctuations, pedestrian activity, and weather variations are dynamic and continually changing. These factors significantly impact an agent's decision-making ability, underscoring the limitations of current VLN models, which do not accurately reflect the complexities of real-world navigation.
View Article and Find Full Text PDFExp Brain Res
January 2025
School of Rehabilitation Sciences, Université Laval, Quebec, Canada.
Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).
View Article and Find Full Text PDFHeliyon
January 2025
Center for Research in Geospatial Data and Intelligence, Department of Geomatics Sciences, Université Laval, 1055, Avenue Du Séminaire, Québec, QC, Canada.
To reach a destination within the community, it is crucial that wheelchair users possess the ability to plan, execute, and acquire knowledge of routes in a safe and efficient manner. While numerous methods have been introduced for assessing the accessibility of sidewalks, existing studies often overlook the variations in the perception of the accessibility of long segments based on each wheelchair user's capabilities. Extended distances may lead to increased fatigue, impacting the ability of individuals with mobility disabilities to navigate sidewalks comfortably and independently.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Computer Science, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland.
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!