This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231446 | PMC |
http://dx.doi.org/10.3390/s110606328 | DOI Listing |
Sci Rep
December 2024
Limagrain Brazil S.A., Jataí, Goiás, Brazil.
This study investigates the effectiveness of high-throughput phenotyping (HTP) using RGB images from unmanned aerial vehicles (UAVs) to assess vegetation indices (VIs) in different soybean pure lines. The VIs were accessed at various stages of crop development and correlated with agronomic performance traits. The field research was conducted in the experimental area of the Mato Grosso do Sul Foundation, Brazil, with 60 soybean pure lines.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier.
View Article and Find Full Text PDFSci Rep
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
This paper presents a deep learning model based on an active learning strategy. The model achieves accurate identification of vegetation types in the study area by utilizing multispectral data obtained from preprocessing of unmanned aerial vehicle (UAV) remote sensing equipment. This approach offers advantages such as high data accuracy, mobility, and easy data collection.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, China.
In response to the challenges faced by the Coati Optimization Algorithm (COA), including imbalance between exploration and exploitation, slow convergence speed, susceptibility to local optima, and low convergence accuracy, this paper introduces an enhanced variant termed the Adaptive Coati Optimization Algorithm (ACOA). ACOA achieves a balanced exploration-exploitation trade-off through refined exploration strategies and developmental methodologies. It integrates chaos mapping to enhance randomness and global search capabilities and incorporates a dynamic antagonistic learning approach employing random protons to mitigate premature convergence, thereby enhancing algorithmic robustness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!