AI Article Synopsis

  • The paper discusses two types of nanometer-scale structures: one using nanoparticles with a gold layer on silicon that can be controlled optically through photonic radiation, allowing for varying plasmonic resonance.
  • The second structure features sub-micron superparamagnetic particles arranged on a grid that can be manipulated by the angle of an external magnetic field, enabling control over the grid length and the diffraction order for different wavelengths.
  • Both configurations showcase innovative ways to manipulate physical properties at the nanoscale using external stimuli.

Article Abstract

In this paper we present the configurations of two nanometer scale structures--one of them optically controllable and the second one magnetically controllable. The first involves an array of nanoparticles that are made up of two layers (i.e., Au on top of a Si layer). The device may exhibits a wide range of plasmonic resonance according to external photonic radiation. The second type of device involves the usage of sub micron superparamagnetic particles located on a suitable structuring grid, that according to the angle of the external magnetic field allows control of the length of the structuring grid and therefore control the diffraction order of each wavelength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231588PMC
http://dx.doi.org/10.3390/s110302740DOI Listing

Publication Analysis

Top Keywords

external photonic
8
structuring grid
8
sub-micron particle
4
particle based
4
based structures
4
structures reconfigurable
4
reconfigurable photonic
4
photonic devices
4
devices controllable
4
controllable external
4

Similar Publications

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.

View Article and Find Full Text PDF
Article Synopsis
  • New tetrakis Eu and Gd β-diketonate complexes with benzimidazolium as a counterion were synthesized using a one-pot method, and one specific complex was incorporated into a PMMA matrix showing excellent photonic features.
  • Characterization techniques like ESI-MS, FTIR, and X-ray diffraction were used to analyze the complexes, revealing unique intermolecular interactions and stability of the PMMA-doped material at high temperatures.
  • The study highlighted that the materials exhibited strong photoluminescence with significant red emission when exposed to various UV wavelengths and sunlight, suggesting their potential as efficient light-converting molecular devices.
View Article and Find Full Text PDF

Radiation therapy for childhood-onset craniopharyngioma: systematic review and meta-analysis.

J Neurooncol

January 2025

Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China.

Background: Craniopharyngioma (CP), a benign tumor originating from remnants of Rathke's pouch in the sellar region, accounts for approximately 30% of all cases of craniopharyngioma. Radiation therapy has been used to treat CP patients for decades; however, there is still a lack of systematic reviews on the long-term tumor control outcomes in pediatric CP patients treated with external radiation therapy.

Methods: We conducted a comprehensive search of multiple databases for studies on the tumor progression rates of childhood-onset CP(COCP) patients who received external radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!