Efficient phase unwrapping architecture for digital holographic microscopy.

Sensors (Basel)

Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei, 117, Taiwan.

Published: June 2012

This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). A fast Fourier transform (FFT) based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize throughput of the computation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231254PMC
http://dx.doi.org/10.3390/s111009160DOI Listing

Publication Analysis

Top Keywords

phase unwrapping
12
proposed architecture
12
unwrapping architecture
8
digital holographic
8
holographic microscopy
8
computational speed
8
architecture
5
efficient phase
4
architecture digital
4
microscopy paper
4

Similar Publications

3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed.

View Article and Find Full Text PDF

Super-resolution left ventricular flow and pressure mapping by Navier-Stokes-informed neural networks.

Comput Biol Med

December 2024

Dept. of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA; Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA. Electronic address:

Intraventricular vector flow mapping (VFM) is an increasingly adopted echocardiographic technique that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the forces within the fluid and the resulting accelerations.

View Article and Find Full Text PDF

The growing interest in reconfigurable intelligent surfaces (RIS) for wireless communications is evident, particularly in addressing challenges beyond the normal incidence condition of electromagnetic waves. This paper introduces an innovative approach to achieve beam steering in reflecting-type array structures, specifically reflectarrays, through the use of Reconfigurable Electro-Mechanical Reflectarray (REMR) technology. The REMR structure, equipped with a cam-shaped actuator beneath each unit cell's ground plane, serves as the basis for this design.

View Article and Find Full Text PDF

Phase unwrapping is crucial in fringe projection profilometry (FPP) 3D measurement. However, achieving efficient and robust phase unwrapping remains a challenge, particularly when dealing with high-frequency fringes to achieve high accuracy. Existing methods rely on heavy fringe projections, inevitably sacrificing measurement efficiency.

View Article and Find Full Text PDF

We propose a dual-wavelength scheme for a clipping-avoidance photonic analog-to-digital converter (PADC) operating at the sub-Nyquist sampling rate. The scheme utilizes two characteristics, the phase-wrapping feature of a PADC and the wavelength-sensitive feature of a phase modulator, equivalently performing a dual-modulus (DM) modulo operation to avoid clipping. Coupled with an unwrapping algorithm based on the Chinese remainder theorem (CRT), the proposed scheme enables signal reconstruction from the processed signals independent of the sampling rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!