Factor Xa, a serine protease from the blood coagulation cascade, is an ideal enzyme for molecular recognition studies, as its active site is highly shape-persistent and features distinct, concave sub-pockets. We developed a family of non-peptidic, small-molecule inhibitors with a central tricyclic core orienting a neutral heterocyclic substituent into the S1 pocket and a quaternary ammonium ion into the aromatic box in the S4 pocket. The substituents were systematically varied to investigate cation-π interactions in the S4 pocket, optimal heterocyclic stacking on the flat peptide walls lining the S1 pocket, and potential water replacements in both the S1 and the S4 pockets. Structure-activity relationships were established to reveal and quantify contributions to the binding free enthalpy, resulting from single-atom replacements or positional changes in the ligands. A series of high-affinity ligands with inhibitory constants down to K(i)=2 nM were obtained and their proposed binding geometries confirmed by X-ray co-crystal structures of protein-ligand complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201102571 | DOI Listing |
Adv Mater
March 2025
Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
The effective and precise processing of visual information by the human eye primarily relies on the diverse contrasting functions achieved through synaptic regulation of ion transport in the retina. Developing a bio-inspired retina that uses ions as information carriers can more accurately replicate retina's natural signal processing capabilities, enabling high-performance machine vision. Herein, an ion-confined transport strategy is proposed to construct a bio-inspired retina by developing artificial synapses with inhibitory and excitatory contrasting functions.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFMicrobiol Immunol
March 2025
Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.
C-type lectins are calcium-dependent glycan-binding proteins that play key roles in the innate immune response by recognizing pathogens. Soluble C-type lectins agglutinate and neutralize pathogens, activate the complement system, and promote pathogen clearance via opsonization. Membrane-bound C-type lectins, also known as C-type lectin receptors (CLRs), internalize pathogens and induce their degradation in lysosomes, presenting pathogen-derived antigens to MHC-II molecules to activate adaptive immunity.
View Article and Find Full Text PDFEur J Immunol
March 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, The Netherlands.
Tumor immune escape refers to the process by which cancer cells evade detection and destruction by the immune system. Glycosylation, a post-translational modification that is altered in almost all cancer types, plays a crucial role in this process by modulating immune responses. This review examines our current understanding of how aberrant tumor glycosylation contributes to a tolerogenic microenvironment, focusing on specific glycosylation signatures-fucosylation, truncated O-glycans, and sialylation-and the immune receptors involved.
View Article and Find Full Text PDFGenes Dis
May 2025
Department of Pediatric Surgical Oncology, The Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China.
The pathogenesis of neuroblastoma with bone or bone marrow metastasis (NB-BBM) and its complex immune microenvironment remain poorly elucidated, hampering the advancement of effective risk prediction for BBM and limiting therapeutic strategies. Feature recognition of 142 paraffin-embedded hematoxylin-eosin-stained tumor section images was conducted using a Swin-Transformer for pathological histology to predict NB-BBM occurrence. Single-cell transcriptomics identified a tumor cell subpopulation (NB3) and two tumor-associated macrophage (TAM) subpopulations (SPP1 TAMs and IGHM TAMs) closely associated with BBM and highlighted transketolase (TKT) as a key molecular marker for metastatic progression in NB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!