Factor Xa, a serine protease from the blood coagulation cascade, is an ideal enzyme for molecular recognition studies, as its active site is highly shape-persistent and features distinct, concave sub-pockets. We developed a family of non-peptidic, small-molecule inhibitors with a central tricyclic core orienting a neutral heterocyclic substituent into the S1 pocket and a quaternary ammonium ion into the aromatic box in the S4 pocket. The substituents were systematically varied to investigate cation-π interactions in the S4 pocket, optimal heterocyclic stacking on the flat peptide walls lining the S1 pocket, and potential water replacements in both the S1 and the S4 pockets. Structure-activity relationships were established to reveal and quantify contributions to the binding free enthalpy, resulting from single-atom replacements or positional changes in the ligands. A series of high-affinity ligands with inhibitory constants down to K(i)=2 nM were obtained and their proposed binding geometries confirmed by X-ray co-crystal structures of protein-ligand complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201102571 | DOI Listing |
J Immunol
February 2025
Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.
The life cycle of effector T cells is determined by signals downstream of the T cell receptor (TCR) that induce activation and proinflammatory activity, or death as part of the process to resolve inflammation. We recently reported that T cell myeloid differentiation primary response 88 (MyD88) tunes down TCR activation and limits T cell survival in the cardiac and tumor inflammatory environments, in contrast to its proinflammatory role in myeloid cells upon toll-like receptor (TLR) recognition of pathogen- and damage-associated molecular patterns. However, the molecular mechanism remains unknown.
View Article and Find Full Text PDFJ Fluoresc
March 2025
Department of English, Easwari Engineering College, Chennai, India.
Fluorescence-based photoinduced electron transfer (PET) has garnered significant attention in the molecular recognition field in recent years because of its unique and desirable photophysical properties. Recent advancements in PET-based chemosensors have demonstrated their potential for real-time monitoring of pollutants such as heavy metals, pesticides, and organic contaminants in various environmental matrices. This review emphasizes the recent advancements in fluorogenic and chromogenic PET-based chemosensors based on Anthracene, Imidazole, Indole, Pyrrole, Thiazole, Naphthalene, Quinoline, Calix[4]arene, Fluorescein, Quantum Dots, Schiff base compounds and also focusing on their molecular design, sensing mechanisms, and photophysical properties reported from the year 2011 to 2024.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
The effective and precise processing of visual information by the human eye primarily relies on the diverse contrasting functions achieved through synaptic regulation of ion transport in the retina. Developing a bio-inspired retina that uses ions as information carriers can more accurately replicate retina's natural signal processing capabilities, enabling high-performance machine vision. Herein, an ion-confined transport strategy is proposed to construct a bio-inspired retina by developing artificial synapses with inhibitory and excitatory contrasting functions.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFMicrobiol Immunol
March 2025
Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.
C-type lectins are calcium-dependent glycan-binding proteins that play key roles in the innate immune response by recognizing pathogens. Soluble C-type lectins agglutinate and neutralize pathogens, activate the complement system, and promote pathogen clearance via opsonization. Membrane-bound C-type lectins, also known as C-type lectin receptors (CLRs), internalize pathogens and induce their degradation in lysosomes, presenting pathogen-derived antigens to MHC-II molecules to activate adaptive immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!