Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)(2)H(2)O]·x H(2)O, y EtOH} [Ln=Tb (1), Gd (2), and Eu (3)] and {[Ln(αH-PTMTC)(EtOH)(2)H(2)O]·x H(2)O, y EtOH} [Ln=Tb (1'), Gd (2'), and Eu (3')] have been prepared by reacting Ln(III) ions with tricarboxylate-perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC(3-)) or closed-shell (αH-PTMTC(3-)) character, respectively. X-ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (4(2).8)·(4(4).6(2).8(5).10(4)) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non-coordinated guest-solvent molecules as confirmed by the XRD structure of the guest-free [Tb(PTMTC)(EtOH)(2)H(2)O] and [Tb(αH-PTMTC)(EtOH)(2)H(2)O] materials. Accessible voids represent 40% of the cell volume. Metal-centered luminescence was observed in Tb(III) and Eu(III) coordination polymers 1' and 3', although the Ln(III)-ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln-radical} (in 1 and 2) and the {radical-radical} exchange interactions (in 3) were assessed by comparing the behaviors for the radical-based coordination polymers 1-3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical-radical} interactions were found in 3, ferromagnetic {Ln-radical} interactions propagated in the 3D architectures of 1 and 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201102278 | DOI Listing |
J Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFAdv Mater
January 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Herein, a parallel "bifunctional group" modulation method is proposed to achieve controlled modulation of the emission wavelength and full-width at half-maximum (FWHM) values. As a result, three proof-of-concept emitters, namely DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh, are designed and synthesized, with the first functional dibenzo[b,d]thiophene unit concurrently reducing the bandgap and elevate their triplet state energy. A second functional group 1,1':3',1″-triphenyl, and electron acceptors 1,3-difluorobenzene and benzonitrile, respectively, to deepen the HOMO and LUMO levels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry, Department of Restorative Dentistry, Gazi University, Bişkek St. 1. St. Number: 8 Emek, Ankara, Turkey.
Background: Repairing composite resins is a less invasive alternative to complete restoration replacement. To achieve a successful bond between the existing and newly applied composite materials, various surface preparation methods, such as sandblasting and acid etching, have been explored. The aim of the study was to evaluate the effect of different surface treatments on the repair bond strength of a universal nanohybrid composite resin restorative material before and after thermal aging, by utilizing a micro-shear bond strength (µSBS) test.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China.
Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!