In this paper, we described the preparation and characterization of different types of modified CdSe/ZnS quantum dots (QDs) and explored the biological effects of QDs with different surface modifications on the whole growth of unicellular protozoan Tetrahymena thermophila BF(5) using a thermal activity monitor air isothermal microcalorimeter. Our results demonstrated that adenosine 5'-monophosphate (AMP) showed stronger interaction with QDs than other types of nucleotide. AMP-QDs could stimulate the growth of T. thermophila while mercaptoacetic acid-capped CdSe/ZnS quantum dots inhibited it. In addition, the population density determination and fluorescence imaging of T. thermophila BF(5) also confirmed the results obtained from microcalorimetry. It is believed that this approach will provide a more convenient methodology for the kinetics and thermodynamics of microorganism when coexisting with QDs in real time, and all of which are very significant to understanding the effect of QDs to organism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-011-9286-4DOI Listing

Publication Analysis

Top Keywords

cdse/zns quantum
12
quantum dots
12
tetrahymena thermophila
8
thermophila bf5
8
qds
5
preparation biological
4
biological nucleotide-capped
4
nucleotide-capped cdse/zns
4
dots tetrahymena
4
thermophila
4

Similar Publications

detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of detecting non-steroidal anti-inflammatory drugs (NSAIDs) due to their common use and possible effects on health and the environment.
  • Recent advancements in sensing technologies for NSAIDs are explored, particularly focusing on molecular receptors using specialized fluorescent molecules and advanced nanostructured assemblies.
  • The review also addresses the binding mechanisms, challenges, and future directions in developing innovative sensors for rapid and selective NSAID detection, filling a gap in the existing literature on this topic.
View Article and Find Full Text PDF

The use of nanostructures to enhance the emission of single-photon sources has attracted some attention in the last decade due to the development of quantum technologies. In particular, the use of metallic and high-refractive-index dielectric materials has been proposed. However, the utility of moderate-refractive-index dielectric nanostructures to achieve more efficient single-photon sources remains unexplored.

View Article and Find Full Text PDF

Composite diatom fluorescent sensor substrate enriched with CdSe/ZnS quantum dots on the surface by biofabrication.

Colloids Surf B Biointerfaces

February 2025

College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, Qingdao/ Sanya, 266000, China. Electronic address:

Diatoms have developed unique micro- and nanostructures and photonic crystal properties during billions of years of life evolution. In this study, a fluorescence sensor substrate (QD-Diatom) was prepared by biofabrication, and CdSe/ZnS quantum dots (QDs) were immobilized on the surface of diatom biosilica. The concentration of CdSe/ZnS QDs of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!