The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and syntaxin-1A. Here we show that this axis is retained in mouse ES cells committed to differentiate toward a neurological phenotype. Moreover, overexpression of miR-34a alters hippocampal spinal morphology, and results in electrophysiological changes consistent with a reduction in spinal function. Therefore, the TAp73/miR-34a axis has functional relevance in primary neurons. These data reinforce a role for miR-34a in neuronal development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248521PMC
http://dx.doi.org/10.1073/pnas.1112063108DOI Listing

Publication Analysis

Top Keywords

spinal morphology
8
neuronal development
8
microrna-34a regulates
4
regulates neurite
4
neurite outgrowth
4
outgrowth spinal
4
morphology function
4
function p53
4
p53 family
4
family member
4

Similar Publications

Rationale: Ependymomas are commonly prevalent intramedullary neoplasms in adults, with hardly any cases of exophytic extramedullary ependymoma being reported. Meningiomas, on the contrary, are one of the most common intradural extramedullary (IDEM) tumors. However, the occurrence of both IDEM tumors simultaneously is extremely rare.

View Article and Find Full Text PDF

Rationale: Synovial sarcoma (SS) is a rare and highly malignant soft tissue sarcoma. When SS occurs in atypical locations, it can present significant diagnostic challenges. We report a case of paraspinal SS initially misdiagnosed as spinal tuberculosis, highlighting the diagnostic difficulties and the importance of considering SS in the differential diagnosis.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Anatomic Approach to Fetal Hydrocephalus.

Radiographics

February 2025

From the Departments of Radiology and Imaging Sciences (A.M.G., P.J.W., A.M.K.) and Obstetrics and Gynecology (S.E.D.), University of Utah Health, 30 N Mario Capecchi Dr, Salt Lake City, UT 84112; and University of Utah School of Medicine, Salt Lake City, Utah (J.N.C.).

Hydrocephalus is an imprecise term and refers to the imbalance of brain parenchyma and cerebral spinal fluid in the cranial vault. Ventriculomegaly, or enlargement of the ventricular system, is often the more precise term and is therefore preferred. Appropriate imaging and measurement techniques are critical to detect ventriculomegaly and grade its severity.

View Article and Find Full Text PDF

Isosteviol Sodium Promotes Neurological Function Recovery in a Model of Spinal Cord Injury in Rats.

Immun Inflamm Dis

January 2025

School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Background: Traumatic spinal cord injury (SCI) is an incurable condition that is the largest cause of disability. In previous studies, Isosteviol sodium (STVNa) has been shown to protect rats against acute focal cerebral ischemia; however, the effects of STVNa on SCI recovery in rats remain unknown.

Methods: STVNa was given intraperitoneally after SCI to see if it had any neuroprotective benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!