We study crossflow filtration mechanisms in suspension-feeding fishes using computational fluid dynamics to model fluid flow and food particle movement in the vicinity of the gill rakers. During industrial and biological crossflow filtration, particles are retained when they remain suspended in the mainstream flow traveling across the filter surface rather than traveling perpendicularly to the filter. Here we identify physical parameters and hydrodynamic processes that determine food particle movement and retention inside the fish oral cavity. We demonstrate how five variables affect flow patterns and particle trajectories: (1) flow speed inside the fish oral cavity, (2) incident angle of the flow approaching the filter, (3) dimensions of filter structures, (4) particle size, and (5) particle density. Our study indicates that empirical experiments are needed to quantify flow parameters inside the oral cavity, and morphological research is needed to quantify dimensions of the filter apparatus such as gill rakers, the gaps between rakers, and downstream barriers. Ecological studies on suspension-feeding fishes are also needed to quantify food particle size and density, as these variables can affect particle retention due to hydrodynamic processes during crossflow filtration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-011-9709-6DOI Listing

Publication Analysis

Top Keywords

crossflow filtration
16
gill rakers
12
food particle
12
oral cavity
12
needed quantify
12
computational fluid
8
fluid dynamics
8
suspension-feeding fishes
8
particle movement
8
hydrodynamic processes
8

Similar Publications

Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM).

View Article and Find Full Text PDF

The demand for lentiviral vectors (LVs) as tools for ex vivo gene therapies is ever-increasing. Despite their promising applications, challenges in LV production remain largely due to the fragile envelope, which challenges the maintenance of vector stability. Thus, downstream processing optimization to enhance efficiency, yield, and product quality is necessary.

View Article and Find Full Text PDF

Clinical and immunological assays of white blood cells (WBCs) in human peripheral blood are of significance for disease diagnosis and immunological studies. However, separating WBCs from blood with high recovery and high purity remains challenging. In this study, by incorporating a pair of linearly tapered filter arrays, a crossflow filtration-based microfluidic chip was designed and fabricated for separation of WBCs from blood.

View Article and Find Full Text PDF

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Dual-Stage Cross-Flow Filtration: Integrated Capture and Purification of Virus-Like Particles.

Biotechnol Bioeng

December 2024

Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Virus-like particles (VLPs) are a versatile technology for the targeted delivery of genetic material through packaging and potential surface modifications for directed delivery or immunological issues. Although VLP production is relatively simple as they can be recombinantly produced using microorganisms such as Escherichia coli, their current downstream processing often relies on individually developed purification strategies. Integrating size-selective separation techniques may allow standardized platform processing across VLP purification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!