Cognitive demise correlates with progressive brain tauopathy in dementing patients. Improved cognition of young Tau.P301L mice contrasts with dysfunction later in life and remains unexplained (Boekhoorn et al., 2006). To unravel early mechanisms, we composed a correlative time line of clinical symptoms, cognitive defects, and biochemical and pathological traits, including comprehensive analysis of dendritic spines in specified regions of the cortex and hippocampus of young and adult Tau.P301L mice. Remarkably, young Tau.P301L mice have not more, but more mature spines than wild-type mice, revealing the anatomical substrate for their improved cognition and LTP. Spine maturation remained high in the hippocampus of adult Tau.P301L mice. However, spines regressed in length paralleling impaired cognition and increased Tau phosphorylation (Terwel et al., 2005). Conversely, spine maturation was unaffected in adult Tau.4R mice, while spine density was increased and length reduced similar to Tau.P301L mice. To explain how protein Tau promoted spinogenesis, we analyzed hippocampal synaptosomes and dendritic spines for mouse and human Tau. While synaptosomes were positive for both mouse and human Tau, weak variable reaction in spines was observed only after fixation according to Bouin. Mouse Tau was absent from spines in wild-type mice, dissociating the pathological actions of Tau in transgenic mice by relocalization into dendrites and spines from the physiological actions of protein Tau in axons only. We conclude that mutant protein Tau modulates cognition and morphology of spines similarly and in both directions, with pathology later in life coinciding with increased phosphorylation and relocalization of Tau from axons to soma and processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634152 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4859-11.2011 | DOI Listing |
Zool Res
January 2025
Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail:
Front Cell Neurosci
December 2024
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2024
L&J Bio USA, Inc., Gaithersburg, MD 20878, USA.
Acta Neuropathol
September 2024
Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
J Biochem
November 2024
Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan.
Alzheimer's disease (AD) is the most common aetiology of dementia. The transcription factor NF-E2-related factor 2 (NRF2) induces the expression of genes encoding phase II detoxification and antioxidant genes. NRF2 is regulated by Kelch-like ECH-associated protein 1 (KEAP1), and the KEAP1-NRF2 system is the key regulatory system involved in cytoprotection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!