Magnetic resonance imaging (MRI) is sensitive to focal multiple sclerosis (MS) lesions. For this reason, conventional MRI measures of the burden of disease derived from dual-echo, fluid-attenuated inversion recovery and postcontrast T1-weighted sequences are regularly used to monitor disease course in patients with confirmed MS and have been included in the diagnostic workup of patients in whom MS is suspected. Other quantitative magnetic resonance (MR)-based techniques with a higher pathological specificity (including magnetization transfer-MRI, diffusion tensor-MRI, and proton MR spectroscopy) have been extensively applied to measure disease burden within focal visible lesions and in the normal-appearing white matter and gray matter of MS patients at different stages of the disease. These methods, combined with functional imaging techniques, are progressively improving our understanding of the factors associated with MS evolution. More recently, the application of new imaging modalities capable of measuring pathological processes related to the disease that have been neglected in the past (eg, iron deposition and perfusion abnormalities) and the advent of high- and ultrahigh-field magnets have provided further insight into the pathobiological features of MS. After a brief summary of the main results obtained from the established and emerging MR methods, this review discusses the steps needed before the latter become suitable for widespread use in the MS research community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archneurol.2011.914 | DOI Listing |
J Gastroenterol Hepatol
January 2025
Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Background And Aim: Colorectal cancer (CRC) is a significant global health burden, and screening can greatly reduce CRC incidence and mortality. Previous studies investigated the economic effects of CRC screening. We performed a systematic review to provide the cost-effectiveness of CRC screening strategies across countries with different income levels.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
J Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
World J Diabetes
January 2025
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!