Rationale: Hydrogen peroxide (H(2)O(2)) serves as a key endothelium-derived hyperpolarizing factor mediating flow-induced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H(2)O(2) elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H(2)O(2) involves the oxidation of cysteine residues in its target proteins, including protein kinase G (PKG)-Iα, thereby modulating their activities.
Objective: Here we hypothesize that H(2)O(2) dilates HCAs through direct oxidation and activation of PKG-Iα leading to the opening of the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel and subsequent smooth muscle hyperpolarization.
Methods And Results: Flow and H(2)O(2) induced pressure gradient/concentration-dependent vasodilation in isolated endothelium-intact and -denuded HCAs, respectively. The dilation was largely abolished by iberiotoxin, a BK(Ca) channel blocker. The PKG inhibitor Rp-8-Br-PET-cGMP also markedly inhibited flow- and H(2)O(2)-induced dilation, whereas the soluble guanylate cyclase inhibitor ODQ had no effect. Treatment of coronary smooth muscle cells (SMCs) with H(2)O(2) elicited dose-dependent, reversible dimerization of PKG-Iα, and induced its translocation to the plasma membrane. Patch-clamp analysis identified a paxilline-sensitive single-channel K(+) current with a unitary conductance of 246-pS in freshly isolated coronary SMCs. Addition of H(2)O(2) into the bath solution significantly increased the probability of BK(Ca) single-channel openings recorded from cell-attached patches, an effect that was blocked by the PKG-Iα inhibitor DT-2. H(2)O(2) exhibited an attenuated stimulatory effect on BK(Ca) channel open probability in inside-out membrane patches.
Conclusions: H(2)O(2) dilates HCAs through a novel mechanism involving protein dimerization and activation of PKG-Iα and subsequent opening of smooth muscle BK(Ca) channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272100 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.111.258871 | DOI Listing |
Curr Mol Pharmacol
January 2025
Department of Cardiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China.
Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
Background: Obstructive sleep apnea (OSA) is frequently associated with increased incidence and mortality of pulmonary hypertension (PH). The immune response contributes to pulmonary artery remodeling and OSA-related diseases. The immunologic factors linked to OSA-induced PH are not well understood.
View Article and Find Full Text PDFBMC Urol
January 2025
Department of Urology and Institute of Urology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China.
Purpose: This study aims to evaluate detrusor after contraction (DAC) characteristics in females with pure urodynamic stress incontinence (USI).
Methods: We examined the urodynamics database from our urodynamic study center. Urodynamic data from pure USI cases with and without DAC were compared.
ACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!