Infantile hypertrophic pyloric stenosis (IHPS) is a common cause of upper gastrointestinal obstruction during infancy. A multifactorial background of the disease is well established. Multiple susceptibility loci including the neuronal nitric oxide synthase (NOS1) gene have previously been linked to IHPS, but contradictory results of linkage studies in different materials indicate genetic heterogeneity. To identify IHPS susceptibility loci, we conducted a genome-wide linkage analysis in 37 Swedish families. In regions where the Swedish material showed most evidence in favor of linkage, 31 additional British IHPS families were analyzed. Evidence in favor of significant linkage was observed in the Swedish material to two loci on chromosome 2q24 (non-parametric linkage (NPL) =3.77) and 7p21 (NPL=4.55). In addition, evidence of suggestive linkage was found to two loci on chromosome 6p21 (NPL=2.97) and 12q24 (NPL=2.63). Extending the material with British samples did not enhance the level of significance. Regions with linkage harbor interesting candidate genes, such as glucagon-like peptide-2 (GLP-2 encoded by the glucagon gene GCG), NOS1, motilin (MLN) and neuropeptide Y (NPY). The coding exons for GLP-2, and NPY were screened for mutations with negative results. In conclusion, we could confirm suggestive linkage to the region harboring the NOS1 gene and detected additional novel susceptibility loci for IHPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/jhg.2011.137 | DOI Listing |
Nat Commun
January 2025
MRC Laboratory of Medical Sciences, London, UK.
Gene enhancers often form long-range contacts with promoters, but it remains unclear if the activity of enhancers and their chromosomal contacts are mediated by the same DNA sequences and recruited factors. Here, we study the effects of expression quantitative trait loci (eQTLs) on enhancer activity and promoter contacts in primary monocytes isolated from 34 male individuals. Using eQTL-Capture Hi-C and a Bayesian approach considering both intra- and inter-individual variation, we initially detect 19 eQTLs associated with enhancer-eGene promoter contacts, most of which also associate with enhancer accessibility and activity.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China.
Objectives: This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications.
Methods: This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7.
Probl Endokrinol (Mosk)
January 2024
Background: Osteoporosis is a common age-related disease with disabling consequences, the early diagnosis of which is difficult due to its long and hidden course, which often leads to diagnosis only after a fracture. In this regard, great expectations are placed on advanced developments in machine learning technologies aimed at predicting osteoporosis at an early stage of development, including the use of large data sets containing information on genetic and clinical predictors of the disease. Nevertheless, the inclusion of DNA markers in prediction models is fraught with a number of difficulties due to the complex polygenic and heterogeneous nature of the disease.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci.
View Article and Find Full Text PDFBrain
January 2025
Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, W1W 7FF, UK.
Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!