Circuits, cells, and synapses: toward a new target for deep brain stimulation in depression.

Neuropsychopharmacology

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Published: January 2012

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3238075PMC
http://dx.doi.org/10.1038/npp.2011.193DOI Listing

Publication Analysis

Top Keywords

circuits cells
4
cells synapses
4
synapses target
4
target deep
4
deep brain
4
brain stimulation
4
stimulation depression
4
circuits
1
synapses
1
target
1

Similar Publications

Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.

View Article and Find Full Text PDF

Sensitive and accurate detection and imaging of different microRNAs (miRNAs) in cancer cells hold great promise for early disease diagnosis. Herein, a DNA tetrahedral scaffold (DTS)-corbelled autonomous-motion (AM) molecular machine based fluorescent sensing platform was designed for simultaneous detection of two types of miRNAs (miRNA-21 and miRNA-155) in HeLa cells. Locking-strand-silenced DNAzymes (P:L duplex) were firstly grafted at the loop of target-analogue-embedded double-stem hairpin substrates (TDHS) of DTS, making the sensor in a "signal off" state due to the closely distance between modified fluorophores (FAM and Cy5) with the corresponding quenchers (BHQ1 and BHQ2).

View Article and Find Full Text PDF

The formation of non-ion conducting byproducts on zinc anode is notoriously detrimental to aqueous zinc-ion batteries (AZIBs). Herein, we successfully transform a representative detrimental byproduct, crystalline zinc hydroxide sulfate (ZHS) to fast-ion conducting solid-electrolyte interphase (SEI) via amorphization and fluorination induced by suspending CaF nanoparticles in dilute sulfate electrolytes. Distinct from widely reported nonhomogeneous organic-inorganic hybrid SEIs that exhibit structural and chemical instability, the designed single-phase SEI is homogeneous, mechanically robust, and chemically stable.

View Article and Find Full Text PDF

Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells.

View Article and Find Full Text PDF

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!